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Abstract

A substantial school in the philosophy of science identifies Bayesian inference with
inductive inference and even rationality as such, and seems to be strengthened by the
rise and practical success of Bayesian statistics. We argue that the most successful
forms of Bayesian statistics do not actually support that particular philosophy but
rather accord much better with sophisticated forms of hypothetico-deductivism. We
examine the actual role played by prior distributions in Bayesian models, and the crucial
aspects of model checking and model revision, which fall outside the scope of Bayesian
confirmation theory. We draw on the literature on the consistency of Bayesian updating
and also on our experience of applied work in social science.

Clarity about these matters should benefit not just philosophy of science, but also
statistical practice. At best, the inductivist view has encouraged researchers to fit and
compare models without checking them; at worst, theorists have actively discouraged
practitioners from performing model checking because it does not fit into their frame-
work.

1 The usual story—which we don’t like

In so far as I have a coherent philosophy of statistics, I hope it is “robust” enough
to cope in principle with the whole of statistics, and sufficiently undogmatic not
to imply that all those who may think rather differently from me are necessarily
stupid. If at times I do seem dogmatic, it is because it is convenient to give my

own views as unequivocally as possible. (Bartlett, (1967, p. 458)

Schools of statistical inference are sometimes linked to approaches to the philosophy
of science. “Classical” statistics—as exemplified by Fisher’s p-values, Neyman-Pearson
hypothesis tests, and Neyman’s confidence intervals—is associated with the hypothetico-
deductive and falsificationist view of science. Scientists devise hypotheses, deduce implica-
tions for observations from them, and test those implications. Scientific hypotheses can be
rejected (that is, falsified), but never really established or accepted in the same way.
presents the leading contemporary statement of this view.
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In contrast, Bayesian statistics or “inverse probability” —starting with a prior distribu-
tion, getting data, and moving to the posterior distribution—is associated with an inductive
approach of learning about the general from particulars. Rather than testing and attempted
falsification, learning proceeds more smoothly: an accretion of evidence is summarized by a
posterior distribution, and scientific process is associated with the rise and fall in the pos-
terior probabilities of various models; see Figure[l| for a schematic illustration. In this view,
the expression p(f|y) says it all, and the central goal of Bayesian inference is computing
the posterior probabilities of hypotheses. Anything not contained in the posterior distri-
bution p(fly) is simply irrelevant, and it would be irrational (or incoherent) to attempt
falsification, unless that somehow shows up in the posterior. The goal is to learn about
general laws, as expressed in the probability that one model or another is correct. This
view, strongly influenced by Savage| (1954)), is widespread and influential in the philosophy
of science (especially in the form of Bayesian confirmation theory; see Howson and Urbach
1989; |[Earman |1992) and among Bayesian statisticians (Bernardo and Smith, {1994). Many
people see support for this view in the rising use of Bayesian methods in applied statistical
work over the last few decades[l

We think most of this received view of Bayesian inference is wrong. Bayesian methods
are no more inductive than any other mode of statistical inference, which is, not inductive
in any strong sense. Bayesian data analysis is much better understood from a hypothetico-
deductive perspectiveﬂ Implicit in the best Bayesian practice is a stance that has much in
common with the error-statistical approach of Mayol| (1996)), despite the latter’s frequentist
orientation. Indeed, crucial parts of Bayesian data analysis, such as model checking, can be
understood as “error probes” in Mayo’s sense.

We proceed by a combination of examining concrete cases of Bayesian data analysis in
empirical social science research, and theoretical results on the consistency and convergence
of Bayesian updating. Social-scientific data analysis is especially salient for our purposes

!Consider the current (9 June 2010) state of the Wikipedia article on Bayesian inference, which begins as
follows:

Bayesian inference is statistical inference in which evidence or observations are used to update
or to newly infer the probability that a hypothesis may be true.

It then continues with:

Bayesian inference uses aspects of the scientific method, which involves collecting evidence that
is meant to be consistent or inconsistent with a given hypothesis. As evidence accumulates,
the degree of belief in a hypothesis ought to change. With enough evidence, it should become
very high or very low....Bayesian inference uses a numerical estimate of the degree of belief
in a hypothesis before evidence has been observed and calculates a numerical estimate of
the degree of belief in the hypothesis after evidence has been observed. ... Bayesian inference
usually relies on degrees of belief, or subjective probabilities, in the induction process and does
not necessarily claim to provide an objective method of induction. Nonetheless, some Bayesian
statisticians believe probabilities can have an objective value and therefore Bayesian inference
can provide an objective method of induction.

These views differ from those of, e.g., [Bernardo and Smith| (1994) or [Howson and Urbach| (1989) only in the
omission of technical details.

2We are not interested in the hypothetico-deductive “confirmation theory” prominent in philosophy of
science from the 1950s through the 1970s, and linked to the name of [Hempel| (1965). The hypothetico-
deductive account of scientific method to which we appeal is distinct from, and much older than, this
particular sub-branch of confirmation theory.
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Figure 1: Hypothetical picture of idealized Bayesian inference under the conventional in-
ductive philosophy. The posterior probability of different models changes over time with
the expansion of the likelihood as more data are entered into the analysis. Depending on
the context of the problem, the time scale on the x-axis might be hours, years, or decades,
in any case long enough for information to be gathered and analyzed that first knocks out
hypothesis 1 in favor of hypothesis 2, which in turn is dethroned in favor of the current
champion, model 3.

because there is general agreement that, in this domain, all models in use are wrong—not
merely falsifiable, but actually false. With enough data—and often only a fairly moderate
amount—any analyst could reject any model now in use to any desired level of confidence.
Model fitting is nonetheless a valuable activity, and indeed the crux of data analysis. To
understand why this is so, we need to examine how models are built, fitted, used, and
checked, and the effects of misspecification on models.

2 The data-analysis cycle

We begin with a very brief reminder of how statistical models are built and used in data
analysis, following Gelman et al.|(2003), or, from a frequentist perspective, |Guttorp (1995)).

The statistician begins with a model that stochastically generates all the data y, whose
joint distribution is specified as a function of a vector of parameters 6 from a space ©
(which may, in the case of some so-called non-parametric models, be infinite dimensional).
This joint distribution is the likelihood function. The stochastic model may involve other,
unmeasured but potentially observable variables y—that is, missing or latent data—and
more-or-less fixed aspects of the data-generating process as covariates. For both Bayesians
and frequentists, the joint distribution of (y, 7) depends on 6. Bayesians insist on a full joint
distribution, embracing observables, latent variables, and parameters, so that the likelihood
function becomes a conditional probability density, p(y|€). In designing the stochastic pro-
cess for (y,9), the goal is to represent the systematic relationships between the variables
and between the variables and the parameters, and as well as to represent the noisy (con-
tingent, accidental, irreproducible) aspects of the data stochastically. Against the desire



for accurate representation one must balance conceptual, mathematical and computational
tractability. Some parameters thus have fairly concrete real-world referents, such as the fa-
mous (in statistics) survey of the rat population of Baltimore (Brown et al., |1955). Others,
however, will reflect the specification as a mathematical object more than the reality be-
ing modeled—t-distributions are sometimes used to model heavy-tailed observational noise,
with the number of degrees of freedom for the ¢ representing the shape of the distribution;
few statisticians would take this as realistically as the number of rats.

Bayesian modeling, as mentioned, requires a joint distribution for (y,y,6), which is
conveniently factored (without loss of generality) into a prior distribution for the parameters,
p(0), and the complete-data likelihood, p(y, 3|6), so that p(y|0) = [ p(y,7|0)dy. The prior
distribution is, as we will see, really part of the model. In practice, the various parts of the
model have functional forms picked by a mix of substantive knowledge, scientific conjectures,
statistical properties, analytical convenience, and computational tractability.

Having completed the specification, the Bayesian analyst calculates the posterior distri-
bution p(f|y); it is so that this quantity makes sense that the observed y and the parameters
f must have a joint distribution. The rise of Bayesian methods in applications has rested
on finding new ways of to actually carry through this calculation, even if only approxi-
mately, notably by adopting Markov chain Monte Carlo methods, originally developed in
statistical physics to evaluate high-dimensional integrals (Metropolis et al., [1953; Newman
and Barkemal, [1999), to sample from the posterior distribution. The natural counterpart of
this stage for non-Bayesian analyses are various forms of point and interval estimation to
identify the set of values of # that are consistent with the data y.

According to the view we sketched above, data analysis basically ends with the calcula-
tion of the posterior p(f|y). At most, this might be elaborated by partitioning © into a set
of models or hypotheses, ©1,...0k, each with a prior probability p(0j) and its own set of
parameters 0. One would then compute the posterior parameter distribution within each
model, p(0x|y, O ), and the posterior probabilities of the models,

p(Or)p(y|Ok)
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These posterior probabilities of hypotheses can be used for Bayesian model selection or
Bayesian model averaging (topics to which we return below). Scientific progress, in this
view, consists of gathering data—perhaps through well-designed experiments, designed to
distinguish among interesting competing scientific hypotheses (cf. |Atkinson and Donev),
1992} Paninskil, |2005)—and then plotting the p(©x|y)’s over time and watching the system
learn (as sketched in Figure [1)).

In our view, the account of the last paragraph is crucially mistaken. The data-analysis
process—Bayesian or otherwise—does not end with calculating parameter estimates or pos-
terior distribution. Rather, the model can then be checked, by comparing the implications
of the fitted model to the empirical evidence. One asks questions like, Do simulations from
the fitted model resemble the original data? Is the fitted model consistent with other data
not used in the fitting of the model? Do variables that the model says are noise (“error
terms”) in fact display readily-detectable patterns? Discrepancies between the model and

p(Okly)




data can be used to learn about the ways in which the model is inadequate for the scientific
purposes at hand, and thus to motivate expansions and changes to the model (§4)).

2.1 Example: Estimating voting patterns in subsets of the population

We demonstrate the hypothetico-deductive Bayesian modeling process with an example
from our recent applied research (Gelman et al., |2010)). In recent years, American political
scientists have been increasingly interested in the connections between politics and income
inequality (see, e.g., McCarty et al.[[2006). In our own contribution to this literature, we
estimated the attitudes of rich, middle-income, and poor voters in each of the fifty states
(Gelman et al., |2008b)). As we described in our article on the topic (Gelman et al., 2008c),
we began by fitting a varying-intercept logistic regression: modeling votes (coded as y = 1
for votes for the Republican presidential candidate or y = 0 for Democratic votes) given
family income (coded in five categories from low to high as x = —2,-1,0,1,2), using a
model of the form Pr(y = 1) = logit™!(as 4 bz), where s indexes state of residence—the
model is fit to survey responses—and the varying intercepts as correspond to some states
being more Republican-leaning than others. Thus, for example as has a positive value in a
conservative state such as Utah and a negative value in a liberal state such as California.
The coefficient b represents the “slope” of income, and its positive value indicates that,
within any state, richer voters are more likely to vote Republican.

It turned out that this varying-intercept model did not fit our data, as we learned
by making graphs of the average survey response and fitted curves for the different income
categories within each state. We had to expand to a varying-intercept, varying-slope model,
Pr(y = 1) = logit™!(as + bsx), in which the slopes b, varied by state as well. This model
expansion led to a corresponding expansion in our understanding: we learned that the gap
in voting between rich and poor is much greater in poor states such as Mississippi than in
rich states such as Connecticut. Thus, the polarization between rich and poor voters varied
in important ways geographically.

We found this not through any process of Bayesian induction but rather through model
checking. Bayesian inference was crucial, not for computing the posterior probability that
any particular model was true—we never actually did that—but in allowing us to fit rich
enough models in the first place that we could study state-to-state variation, incorporating
in our analysis relatively small states such as Mississippi and Connecticut that did not have
large samples in our survey. (Gelman and Hilll (2006]) review the hierarchical models that
allow such partial pooling.)

Life continues, though, and so do our statistical struggles. After the 2008 election,
we wanted to make similar plots, but this time we found that even our more complicated
logistic regression model did not fit the data—especially when we wanted to expand our
model to estimate voting patterns for different ethnic groups. Comparison of data to fit
led to further model expansions, leading to our current specification, which uses a varying-
intercept, varying-slope logistic regression as a baseline but allows for nonlinear and even
non-monotonic patterns on top of that. Figure [2| shows some of our inferences in map form,
while Figure [3] shows one of our diagnostics of data and model fit.

The power of Bayesian inference here is deductive: given the data and some model
assumptions, it allows us to make lots of inferences, many of which can be checked and
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Figure 2: Based on a model fitted to survey data: states won by John McCain and Barack
Obama among different ethnic and income categories. States colored deep red and deep blue
indicate clear McCain and Obama wins; pink and light blue represent wins by narrower
margins, with a continuous range of shades going to gray for states estimated at exactly
50/50. The estimates shown here represent the culmination of months of effort, in which
we fit increasingly complex models, at each stage checking the fit by comparing to data and
then modifying aspects of the prior distribution and likelihood as appropriate.



2008 election: McCain share of the two-party vote in each income category
within each state among all voters (black) and non-Hispanic whites (green)
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Figure 3: Some of the data and fitted model used to make the maps shown in Figure [3
Dots are weighted averages from pooled June-November Pew surveys; error bars show +1
standard error bounds. Curves are estimated using multilevel models and have a standard
error of about 3% at each point. States are ordered in decreasing order of McCain vote
(Alaska, Hawaii, and D.C. excluded). We fit a series of models to these data; only this last
model fit the data well enough that we were satisfied. In working with larger datasets and
studying more complex questions, we encounter increasing opportunities to check model fit
and thus falsify in a way that is helpful for our research goals.



potentially falsified. For example, look at New York state (in the bottom row of Figure |3):
apparently, voters in the second income category supported John McCain much more than
did voters in neighboring income groups in that state. This pattern is theoretically possible
but it arouses suspicion. A careful look at the graph reveals that this is a pattern in the
raw data which was moderated but not entirely smoothed away by our model. The natural
next step would be to examine data from other surveys. We may have exhausted what we
can learn from this particular dataset, and Bayesian inference was a key tool in allowing us
to do so.

3 The Bayesian principal-agent problem

Before returning to discussions of induction and falsification, we briefly discuss some findings
relating to Bayesian inference under misspecified models. The key idea is that Bayesian
inference for model selection—statements about the posterior probabilities of candidate
models—does not solve the problem of learning from data about problems with existing
models.

In economics, the “principal-agent problem” refers to the difficulty of designing institu-
tions which ensure that one selfish actor, the “agent,” will act in the interests of another,
the “principal,” who cannot monitor and sanction their agent without cost or error. The
problem is one of aligning incentives, so that the agent serves itself by serving the principal.
There is, one might say, a Bayesian principal-agent problem as well. The Bayesian agent is
the methodological fiction (now often approximated in software) of a creature with a prior
distribution over a well-defined hypothesis space ©, a likelihood function p(y|@), and con-
ditioning as its sole mechanism of learning and belief revision. The principal is the actual
statistician or scientist.

The Bayesian agent’s ideas are much more precise than the actual scientist’s; in par-
ticular, the Bayesian (in this formulation, with which we disagree) is certain that some 6
is the exact and complete truth, whereas the scientist is not. At some point in history,
a statistician may well write down a model which he or she believes contains all the sys-
tematic influences among properly-defined variables for the system of interest, with correct
functional forms and distributions of noise terms. This could happen, but we have never
seen it, and in social science we’ve never seen anything that comes close, either. If nothing
else, our own experience suggests that however many different specifications we think of,
there are always others which had not occurred to us, but cannot be immediately dismissed
a priori, if only because they can be seen as alternative approximations to the ones we
made. Yet the Bayesian agent is required to start with a prior distribution whose support
covers all alternatives that could be considered Pl

This is not a small technical problem to be handled by adding a special value of 6, say 0°°
standing for “none of the above”; even if one could calculate p(y|0°°), the likelihood of the
data under this catch-all hypothesis, this in general would not lead to just a small correction
to the posterior, but rather would have substantial effects (Fitelson and Thomason, 2008)).
Fundamentally, the Bayesian agent is limited by the fact that its beliefs always remain

3Tt is also not at all clear that Savage and other founders of Bayesian decision theory ever thought that
this principle should apply outside of the small worlds of artificially simplified and stylized problems—see
Binmore| (2007). But as scientists we care about the real, large world.



within the support of its prior. For the Bayesian agent, the truth must, so to speak, be
always already partially believed before it can become known. This point is less than clear
in the usual treatments of Bayesian convergence, and so worth some attention.

Classical results (Doob, 1949; [Schervish, [1995; Lijoi et al., |2007) show that the Bayesian
agent’s posterior distribution will concentrate on the truth with prior probability 1, provided
some regularity conditions are met. Without diving into the measure-theoretic technical-
ities, the conditions amount to (i) the truth is in the support of the prior, and (ii) the
information set is rich enough that some consistent estimator exists. (See the discussion in
Schervish| (1995] §7.4.1).) When the truth is not in the support of the prior, the Bayesian
agent still thinks that Doob’s theorem applies and assigns zero prior probability to the set
of data under which it does not converge on the truth.

The convergence behavior of Bayesian updating with a misspecified model can be un-
derstood as follows (Berk, 1966; Kleijn and van der Vaart,, 2006} Shalizi, 2009). If the data
are actually coming from a distribution ¢, then the Kullback-Leibler divergence rate, or
relative entropy rate, of the parameter value 0 is

1
d(0) = lim LE [log P12 4nl0)
n—co 1 q(Y1, 92, - Yn)

)

with the expectation being taken under ¢. (For details on when the limit exists, see |Gray
1990.) Then, under not-too-onerous regularity conditions, one can show (Shalizi, 2009) that

pOly1, Y2, - - yn) = p(0) exp {—n(d(0) — d")},

with d* being the essential infimum of the divergence rate. More exactly,

1 5
—ﬁlogp(myhym oY) — d(0) — d7,

g-almost-surely. Thus the posterior distribution comes to concentrate on the parts of the
prior support which have the lowest values of d(f) and the highest expected likelihoodﬁ
There is a geometric sense in which these parts of the parameter space are closest approaches
to the truth within the support of the prior (Kass and Vos, [1997)), but they may or may
not be close to the truth in the sense of giving accurate values for parameters of scientific
interest. They may not even be the parameter values which give the best predictions
(Griinwald and Langford, |2007; [Miller, 2010)). In fact, one cannot even guarantee that the
posterior will concentrate on a single value of 6 at all; if d(#) has multiple global minima,
the posterior can alternate between (concentrating around) them forever (Berk, 1966).

To sum up, what Bayesian updating does when the model is false (that is, in reality,
always) is to try to concentrate the posterior on the best attainable approximations to the
distribution of the data, “best” being measured by likelihood. But depending on how the
model is misspecified, and how 6 represents the parameters of scientific interest, the impact
of misspecification on inferring the latter can range from non-existent to profoundﬂ Since

4More precisely, regions of © where d(0) > d* tend to have exponentially small posterior probability; this
statement covers situations like d(6) only approaching its essential infimum as ||| — oo, etc. See |Shalizi
(2009) for details.

°White| (1994) gives examples of econometric models where the influence of mis-specification on the
parameters of interest runs through this whole range, though only considering maximum likelihood and
maximum quasi-likelihood estimation.



we are quite sure our models are wrong, we need to check whether the misspecification
is so bad that inferences regarding the scientific parameters are in trouble. It is by this
non-Bayesian checking of Bayesian models that we solve our principal-agent problem.

4 Model checking

In our view, a key part of Bayesian data analysis is model checking, which is where there are
links to falsificationism. In particular, we emphasize the role of posterior predictive checks,
creating simulations and comparing the simulated and actual data; these comparisons can
often be done visually (Gelman et al., 2003| ch. 6).

Here’s how this works. A Bayesian model gives us a joint distribution for the parameters
f and the observables y. This implies a marginal distribution for the data,

p(y) = / p(y|0)p(0)do.

If we have observed data y, the prior distribution p(#) shifts to the posterior distribution
p(0)y), and so a different distribution of observables,

P ly) = [ oy IO)p(6ly)ds,

where we use the y™P to indicate hypothetical alternative or future data, a replicated data
set of the same size and shape as the original y, generated under the assumption that the
fitted model, prior and likelihood both, is true. By simulating from the posterior distribution
of y*°P, we see what typical realizations of the fitted model are like, and in particular whether
the observed dataset is the kind of thing that the fitted model produces with reasonably
high probability[f]

If we summarize the data with a test statistic T'(y), we can perform graphical compar-
isons with replicated data and calculate p-values,

Pr(T(y™") > T)ly) .

which can be approximated to arbitrary accuracy as soon as we can simulate y"P. (This is a
valid posterior probability in the model, and its interpretation is no more problematic than
that of any other probability in a Bayesian model.) In practice, graphical test summaries are
often more illuminating than p-values, but in considering ideas of (probabilistic) falsification,
it can be helpful to think about numerical test statistics.

Under the usual understanding that T is chosen so large values indicate poor fits, these
p-values work rather like classical ones (Mayo, |1996; Mayo and Cox, |2006)—they in fact are
generalizations of classical p-values, merely replacing point estimates of parameters 6 with
averages over the posterior distribution—and their basic logic is one of falsification. A very
low p-value says that it is very improbable, under the model, to get data as extreme along
the T-dimension as the actual y; we are seeing something which would be very improbable

5For notational simplicity, we leave out the possibility of generating new values of the hidden variables
4 and set aside choices of which parameters to vary and which to hold fixed in the replications; see |Gelman
et al.| (1996).
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if the model were true. On the other hand a high p-value merely indicates that T'(y) is
an aspect of the data which would be unsurprising if the model is true. Whether this is
evidence for the usefulness of the model depends how likely it is to get such a high p-value
when the model is false: the “severity” of the test, in the terminology of Mayo| (1996]) and
Mayo and Cox| (2006).

Put a little more abstractly, the hypothesized model makes certain probabilistic assump-
tions, from which other probabilistic implications follow deductively. Simulation works out
what those implications are, and tests check whether the data conform to them. Extreme
p-values indicate that the data violate regularities implied by the model, or approach doing
so. If these were strict violations of deterministic implications, we could just apply modus
tollens to conclude that the model was wrong; as it is, we nonetheless have evidence and
probabilities. Our view of model checking, then, is firmly in the long hypothetico-deductive
tradition, running from |Popper| (1934/1959) back through Bernard| (1865/1927)) and beyond
(Laudan) [1981)). A more direct influence on our thinking about these matters is the work
of |Jaynes| (2003)), who illustrated how we may learn the most when we find that our model
does not fit the data—that is, when it is falsified—because then we have found a problem
with our model’s assumptionsm And the better our probability model encodes our scientific
or substantive assumptions, the more we learn from specific falsification.

In this connection, the prior distribution p(@) is one of the assumptions of the model
and does not need to represent the statistician’s personal degree of belief in alternative
parameter values. The prior is connected to the data, and so is potentially testable, via the
posterior predictive distribution of future data y*P:

p(y**ly) = / p(y*?10)p(0]y)do

rep p(y|0)p(0)
= o050

The prior distribution thus has implications for the distribution of replicated data, and so
can be checked using the type of tests we have described, and illustrated aboveﬁ When
it makes sense to think of further data coming from the same source, as in certain kinds
of sampling, time-series or longitudinal problems, the prior also has implications for these
new data (through the same formula as above, changing the interpretation of y™P), and so
becomes testable in a second way. There is thus a connection between the model-checking
aspect of Bayesian data analysis and “prequentialism” (Dawid and Vovk, [1999; |Grunwald),
2007)), but exploring that would take us too far afield.

One advantage of recognizing that the prior distribution is a testable part of a Bayesian
model is that it clarifies the role of the prior in inference, and where it comes from. To

TA similar point was expressed by the sociologist and social historian Charles Tilly, writing from a very
different disciplinary background: “Most social researchers learn more from being wrong than from being
right—provided they then recognize that they were wrong, see why they were wrong, and go on to improve
their arguments. Post hoc interpretation of data minimizes the opportunity to recognize contradictions
between arguments and evidence, while adoption of formalisms increases that opportunity. Formalisms
blindly followed induce blindness. Intelligently adopted, however, they improve vision. Being obliged to
spell out the argument, check its logical implications, and examine whether the evidence conforms to the
argument promotes both visual acuity and intellectual responsibility.” (Tilly, 2004} p. 597)

8 Admittedly, the prior only has observable implications in conjunction with the likelihood, but for a
Bayesian the reverse is also true.
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reiterate, it is hard to claim that the prior distributions used in applied work represent
statisticians’ states of knowledge and belief before examining their data, if only because
most statisticians do not believe their models are true, so their prior degree of belief in all
of © is not 1 but 0. The prior distribution is more like a regularization device, akin to
the penalization terms added to the sum of squared errors when doing ridge regression and
the lasso (Hastie et al., 2001) or spline smoothing (Wahba, [1990). All such devices exploit
a sensitivity-stability tradeoff: they stabilize estimates and predictions by making fitted
models less sensitive to certain details of the data. Using an informative prior distribution
(even if only weakly informative, as in Gelman et al. (2008al)) makes our estimates less
sensitive to the data than, say, maximum-likelihood estimates would be, which can be a net
gainﬂ

Because we see the prior distribution as a testable part of the Bayesian model, we do
not need to follow Jaynes in trying to devise unique, objectively-correct prior distribution
for each situation—an enterprise with an uninspiring track record (Kass and Wasserman),
1996), even leaving aside doubts about Jaynes’s specific proposal (Seidenfeld, (1979, 1987;
Csiszarl, [1995; [Uthink, 1995, 1996). To put it even more succinctly, “the model,” for a
Bayesian, is the combination of the prior distribution and the likelihood, each of which
represents some compromise among scientific knowledge, mathematical convenience, and
computational tractability.

This gives us a lot of flexibility in modeling. We do not have to worry about making
our prior distributions match our subjective beliefs, still less about our model containing
all possible truths. Instead we make some assumptions, state them clearly, see what they
imply, and check the implications. This applies just much to the prior distribution as it
does to the parts of the model showing up in the likelihood function.

4.1 Testing to reveal problems with a model

We are not interested in falsifying our model for its own sake—among other things, having
built it ourselves, we know all the shortcuts taken in doing so, and can already be morally
certain it is false. With enough data, we can certainly detect departures from the model—
this is why, for example, statistical folklore says that the chi-squared statistic is ultimately
a measure of sample size (cf. Lindsay and Liu/2009)). As writers such as |Giere| (1988, ch. 3)
explain, the hypothesis linking mathematical models to empirical data is not that the data-
generating process is exactly isomorphic to the model, but that the data source resembles
the model closely enough, in the respects which matter to us, that reasoning based on the
model will be reliable. Such reliability does not require complete fidelity to the model.
The goal of model checking, then, is not to demonstrate the foregone conclusion of falsity
as such, but rather to learn how, in particular, this model fails (Gelman, 2003|). When we
find such particular failures, they tell us how the model must be improved; when severe
tests cannot find them, the inferences we draw about those aspects of the real world from

9A further advantage to using a prior in conjunction with misspecified models can be improved prediction;
see [Page| (2007). The posterior predictive distribution averages over all values of 6, so its expected error
equals the average of the expected errors of the individual p(y|6), minus the variance of the predictions over
O (Krogh and Vedelsbyl, [1995)). Thus the predictions resulting from Bayesian model averaging can be more
accurate than even the best individual prediction possible with the model. However, since our interest here
is mainly in scientific inference and not in prediction, we will say no more about this here.
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our fitted model become more credible. In designing a good test for model checking, we are
interested in finding particular errors which, if present, would mess up particular inferences,
and devise a test statistic which is sensitive to this sort of mis-specification.

All models will have errors of approximation. Statistical models, however, typically
assert that their errors of approximation will be unsystematic and patternless—“noise”
(Spanos, [2007). Testing this can be valuable in revising the model. In looking at the red-
state/blue-state example, for instance, we concluded that the varying slopes mattered not
just because of the magnitudes of departures from the equal-slope assumption, but also
because there was a pattern, with richer states tending to have shallower slopes.

What we are advocating, then, is what |Cox and Hinkley| (1974) call “pure significance
testing,” in which certain of the model’s implications are compared directly to the data,
rather than entering into a contest with some alternative model. This is, we think, more
in line with what actually happens in science, where it can become clear that even large-
scale theories are in serious trouble and cannot be accepted unmodified even if there is
no alternative available yet. A classical instance is the status of Newtonian physics at the
beginning of the 20th century, where there were enough difficulties—the Michaelson-Morley
effect, anomalies in the orbit of Mercury, the photoelectric effect, the black-body paradox,
the stability of charged matter, etc.—that it was clear, even before relativity and quantum
mechanics, that something would have to give. Even today, our current best theories of
fundamental physics, namely general relativity and the standard model of particle physics,
an instance of quantum field theory, are universally agreed to be ultimately wrong, not
least because they are mutually incompatible, and recognizing this does not require that
one have a replacement theory (Weinberg, 1999).

4.2 Connection to non-Bayesian model checking

Many of these ideas about model checking are not unique to Bayesian data analysis and are
used more or less explicitly by many communities of practitioners working with complex
stochastic models (Ripley||1988; Guttorp|/1995). The reasoning is the same: a model is a
story of how the data could have been generated; the fitted model should therefore be able
to generate synthetic data that look like the real data; failures to do so in important ways
indicate faults in the model.

For instance, simulation-based model checking is now widely accepted for assessing
the goodness of fit of statistical models of social networks (Hunter et al., 2008). That
community was pushed toward predictive model checking by the observation that many
model specifications were “degenerate” in various ways (Handcock, [2003)). For example,
under certain exponential-family network models, the maximum likelihood estimate gave a
distribution over networks which was bimodal, with both modes being very different from
observed networks, but located so that the expected value of the sufficient statistics matched
observations. It was thus clear that these specifications could not be right even before more
adequate specifications were developed (Snijders et al., [2006).

At a more philosophical level, the idea that a central task of statistical analysis is the
search for specific, consequential errors has been forcefully advocated by Mayo (1996]), [Mayo
and Cox (2006); [Mayo and Spanos| (2004), and Mayo and Spanos| (2006). Mayo has placed
a special emphasis on the idea of severe testing—a model being severely tested if it passes a
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probe which had a high probability of detecting an error if it is present. (The exact definition
of a test’s severity is related to, but not quite, that of its power; see Mayo| /1996 or [Mayo
and Spanos 2006 for extensive discussions.) Something like this is implicit in discussions
about the relative merits of particular posterior predictive checks (which can also be framed
non-Bayesianly as graphical hypothesis tests based on the parametric bootstrap).

Our contribution here is to connect this hypothetico-deductive philosophy to Bayesian
data analysis, going beyond the evaluation of Bayesian methods based on their frequency
properties (as recommended by Rubin (1984), |Wasserman| (2006), among others) to em-
phasize the learning that comes from the discovery of systematic differences between model
and data. At the very least, we hope this paper will motivate philosophers of hypothetico-
deductive inference to take a more serious look at Bayesian data analysis (as distinct from
Bayesian theory) and, conversely, to motivate philosophically-minded Bayesian statisticians
to consider alternatives to the inductive interpretation of Bayesian learning.

4.3 Why not just compare the posterior probabilities of different models?

As mentioned above, the standard view of scientific learning in the Bayesian community
is, roughly, that posterior odds of the models under consideration are compared, given
the current datam When Bayesian data analysis is understood as simply getting the
posterior distribution, it is held that “pure significance tests have no role to play in the
Bayesian framework” (Schervish) 1995, p. 218). The dismissal rests on the idea that the
prior distribution can accurately reflect our actual knowledge and beliefsE At the risk of
boring the reader by repetition, there is just no way we can ever have any hope of making
© include all the probability distributions which might be correct, let alone getting p(6|y)
if we did so, so this is deeply unhelpful advice. The main point where we disagree with
many Bayesians is that we do not see Bayesian methods as generally useful for giving the
posterior probability that a model is true, or the probability for preferring model A over
model B, or WhateverH Beyond the philosophical difficulties, there are technical problems
with methods that purport to determine the posterior probability of models, most notably

19Some would prefer to compare the modification of those odds called the Bayes factor (Kass and Raftery,
1995)). Everything we have to say about posterior odds carries over to Bayes factors with few changes.

" As |Schervish| (1995) continues: “If the [parameter space O] describes all of the probability distributions
one is willing to entertain, then one cannot reject [©] without rejecting probability models altogether. If
one is willing to entertain models not in [0], then one needs to take them into account” by enlarging ©, and
computing the posterior distribution over the enlarged space.

12There is a vast literature on Bayes factors, model comparison, model averaging, and the evaluation of
posterior probabilities of models, and although we believe most of this work to be philosophically unsound
(to the extent it is designed to be a direct vehicle for scientific learning), we recognize that these can be useful
techniques. Like all statistical methods, Bayesian and otherwise, these methods are summaries of available
information that can be important data-analytic tools. Even if none of a class of models is plausible as truth,
and even if we aren’t comfortable accepting posterior model probabilities as degrees of belief in alternative
models, these probabilities can still be useful as tools for prediction and for understanding structure in data,
as long as these probabilities are not taken too seriously. See |[Raftery| (1995) for a discussion of the value
of posterior model probabilities in social science research and |Gelman and Rubin/ (1995) for a discussion of
their limitations, and |Claeskens and Hjort| (2008) for a general review of model selection. (Some of the work
on “model-selection tests” in econometrics (e.g., [Vuong]|1989; Rivers and Vuong||2002) is exempt from our
strictures, as it tries to find which model is closest to the data-generating process, while allowing that all of
the models may be mis-specified, but it would take us too far afield to discuss this work in detail.)
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that in models with continuous parameters, aspects of the model that have essentially no
effect on posterior inferences within a model can have huge effects on the comparison of
posterior probability among modelsf—_g] Bayesian inference is good for deductive inference
within a model we prefer to evaluate a model by comparing it to data.

In practice, if we are in a setting where model A or model B might be true, we are
inclined not to do model selection among these specified options, or even to perform model
averaging over them (perhaps with a statement such as, “We assign 40% of our posterior
belief to A and 60% to B”) but rather to do continuous model expansion by forming a
larger model that includes both A and B as special cases. For example, Merrill (1994) used
electoral and survey data from Norway and Sweden to compare two models of political
ideology and voting: the “proximity model” (in which you prefer the political party that is
closest to you in some space of issues and ideology) and the “directional model” (in which
you like the parties that are in the same direction as you in issue space, but with a stronger
preference to parties further from the center). Rather than using the data to pick one model
or the other, we would prefer to think of a model in which voters consider both proximity
and directionality in forming their preferences (Gelman) 1994).

In the social sciences, it is rare for there to be an underlying theory that can provide
meaningful constraints on the functional form of the expected relationships among variables,
let alone the distribution of noise termsFE] Taken seriously, then, this advice would imply
that social scientists should more or less give up using parametric statistical models in
favor of nonparametrics (Ghosh and Ramamoorthi, 2003). And while a greater use of
nonparametric models in empirical research may be desirable on its own merits (see Li
and Racine, 2007)), even this would not really resolve the issue, as nonparametric models
themselves embody assumptions such as conditional independence which are hard to defend
except as approximations. Expanding our prior distribution to embrace all the models which
are actually compatible with our prior knowledge would result in a mess we simply could
not work with, nor interpret if we could.

4.4 Example: Estimating the effects of legislative redistricting

We use one of our own experiences (Gelman and King), |1994) to illustrate scientific progress
through model rejection. We began by fitting a model comparing treated and control units—
state legislatures, immediately after redistricting or not—following the usual practice of
assuming a constant treatment effect (parallel regression lines in “after” vs. “before” plots,
with the treatment effect representing the difference between the lines). In this example, the
outcome was a measure of partisan bias, with positive values representing state legislatures
where the Democrats were overrepresented (compared to how we estimated the Republicans
would have done with comparable vote shares) and negative values in states where the
Republicans were overrepresented. A positive treatment effect here would correspond to a

13This problem has been called the Jeffreys-Lindley paradox and it is the subject of a large literature.
Unfortunately (from our perspective) the problem has usually been studied by Bayesians with an eye toward
“solving” it—that is, coming up with reasonable definitions that allow the computation of nondegenerate
posterior probabilities for continuously-parameterized models—but we we think that this is really a problem
without a solution; see |Gelman et al.| (2003, sec. 6.7).

MManski| (2007) criticizes the econometric practice of making modeling assumptions (such as linearity)
with no support in economic theory, simply to get identifiability.
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Figure 4: Sketch of the usual statistical model for before-after data. The difference between
the fitted lines for the two groups is the estimated treatment effect. The default is to regress
the “after” measurement on the treatment indicator and the “before” measurement, thus
implicitly assuming parallel lines.

redrawing of the district lines that favored the Democrats.

Figureshows the default model that we (and others) typically use for estimating causal
effects in before-after data. We fitted such a no-interaction model in our example too, but
then we made some graphs and realized that the model did not fit the data. The line for
the control units actually had a much steeper slope than the treated units. We fit a new
model, and it had a completely different story about what the treatment effects meant.

The graph for the new model with interactions is shown in Figure [5| The largest effect
of the treatment was not to benefit the Democrats or Republicans (that is, to change the
intercept in the regression, shifting the fitted line up or down) but rather to change the
slope of the line, to reduce partisan bias.

Rejecting the constant-treatment-effect model and replacing by the interaction model
was, in retrospect, a crucial step in this research project. This pattern of higher before-after
correlation in the control group than the treated group is quite general (Gelmanl [2004])), but
at the time we did this study we discovered it only through the graph of model and data,
which falsified the original model and motivated us to think of something better. In our
experience, falsification is about plots and predictive checks, not about Bayes factors or
posterior probabilities of candidate models.

The relevance of this example to the philosophy of statistics is that we began by fitting
the usual regression model with no interactions. Only after visually checking the model
fit—and thus falsifying it in a useful way without the specification of any alternative—did
we take the crucial next step of including an interaction, which changed the whole direction
of our research. The shift was induced by a falsification—a bit of deductive inference from
the data and the earlier version of our model. In this case the falsification came from a
graph rather than a p-value, which in one way is just a technical issue, but in a larger
sense is important in that the graph revealed not just a lack of fit but also a sense of the
direction of the misfit, a refutation that sent us usefully in a direction of substantive model
improvement.
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Figure 5: Effect of redistricting on partisan bias. Each symbol represents a state election
year, with dots indicating controls (years with no redistricting) and the other symbols cor-
responding to different types of redistricting. As indicated by the fitted lines, the “before”
value is much more predictive of the “after” value for the control cases than for the treated
(redistricting) cases. The dominant effect of the treatment is to bring the expected value of
partisan bias toward zero, and this effect would not be discovered with the usual approach

(pictured in Figure |4}, which is to fit a model assuming parallel regression lines for treated
and control cases.

5 The question of induction

As we mentioned at the beginning, Bayesian inference is often held to be inductive in a
way which classical statistics (following the Fisher or Neyman-Pearson traditions) is not.
We need to address this, as we are arguing that all these forms of statistical reasoning are
better seen as hypothetico-deductive.

The common core of various conceptions of induction is some form of inference from
particulars to the general—in the statistical context, presumably, inference from the obser-
vations y to parameters € describing the data-generating process. But if that were all that
was meant, then not only is “frequentist statistics a theory of inductive inference” (Mayo
and Coxl 2006), but the whole range of guess-and-test behaviors engaged in by animals
Holland et al.| (1986) are formalized in the hypothetico-deductive method are also induc-
tive. Even the unpromising-sounding procedure, “Pick a model at random and keep it until
its accumulated error gets too big, then pick another model completely at random,” would
qualify (and could work surprisingly well under some circumstances; cf. Ashby| (1960)); Fos-
ter and Young (2003))). So would utterly irrational procedures (“pick a new random 6 when
the sum of the least significant digits in y is 13”). Clearly something more is required, or
at least implied, by those claiming that Bayesian updating is inductive.

One possibility for that “something more” is to generalize the truth-preserving property
of valid deductive inferences: just as valid deductions from true premises are themselves true,
good inductions from true observations should also be true, at least in the limit of increasing
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evidenceE This, however, is just the requirement that our inferential procedures be consis-
tent. As discussed above, using Bayes’s rule is not sufficient to ensure consistency, nor is it
necessary. In fact, every proof of Bayesian consistency known to us either posits there is a
consistent non-Bayesian procedure for the same problem, or makes other assumptions which
entail the existence of such a procedure. In any case, theorems establishing consistency of
statistical procedures make deductively valid guarantees about these procedures—they are
theorems, after all—but do so on the basis of probabilistic assumptions linking future events
to past data.

It is also no good to say that what makes Bayesian updating inductive is its conformity
to some axiomatization of rationality. If one accepts the Kolmogorov axioms for probability,
and the Savage axioms (or something like them) for decision—makingm then updating by
conditioning follows, and a prior belief state p(#) plus data y deductively entail that the new
belief state is p(f|y). In any case, lots of learning procedures can be axiomatized (all of them
which can be implemented algorithmically, to start with), and these particular axioms do not
in fact guarantee good results, like approaching the truth rather than becoming convinced
of falsehoods—that’s just the question of consistency again.

Karl Popper, the leading advocate of hypothetico-deductivism in the last century, denied
that induction was even possible; his attitude is well-paraphrased by |Greenland| (1998]) as:
“we never use any argument based on observed repetition of instances that does not also
involve a hypothesis that predicts both those repetitions and the unobserved instances of
interest.” This is a recent instantiation of a tradition of anti-inductive arguments that
goes back to Hume, but also beyond him to jal Ghazali (1100/1997)) in the middle ages,
and indeed to the ancient Skeptics (Kolakowski, [1968). As forcefully put by Stove (1982,
1986)), many apparent arguments against this view of induction can be viewed as statements
of abstract premises linking both the observed data and unobserved instances—various
versions of the “uniformity of nature” thesis have been popular, sometimes resolved into a
set of more detailed postulates, as in Russell (1948, part VI, ch. 9), though Stove rather
maliciously crafted a parallel argument for the existence of “angels, or something very
much like them.”lﬂ As Norton| (2003)) argues, these highly abstract premises are both
dubious and often superfluous for supporting the sort of actual inferences scientists make—
-“inductions” are supported not by their matching certain formal criteria (as deductions
are), but rather by material facts. To generalize about the melting point of bismuth (to
use one of Norton’s examples) requires very few samples, provided we accept certain facts
about the homogeneity of the physical properties of elemental substances; whether nature
in general is uniform is not really at issue.

Simply put, we think the anti-inductivist view is pretty much right, but that statistical
models are tools that let us draw inductive inferences on a deductive background. Most
directly, random sampling allows us to learn about unsampled people (unobserved balls in
an urn, as it were), but such inference, however inductive it may appear, relies not any axiom

15We owe this suggestion to conversation with Kevin Kelly; cf. Kelly| (1996, esp. ch. 13).

Despite his ideas on testing, [Jaynes| (2003) was a prominent and emphatic advocate of the claim that
Bayesian inference is the logic of inductive inference as such, but preferred to follow |Cox] (1946, |1961) rather
than Savage. See Halpern| (1999) on the formal invalidity of Cox’s proofs.

1Stove] (1986) further argues that induction by simple enumeration is reliable without making such as-
sumptions, at least sometimes. However, his calculations make no sense unless his data are independent and
identically distributed.
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of induction but rather on deductions from the statistical properties of random samples, and
the ability to actually conduct such sampling. The appropriate design depends on many
contingent material facts about the system we are studying, exactly as Norton argues.

Some results in statistical learning theory establish that certain procedures are “probably
approximately correct” in what’s called a “distribution-free” manner (Bousquet et al., |2004;
Vidyasagar, 2003); some of these results embrace Bayesian updating (McAllister, [1999).
But, here, “distribution free” just means “holding uniformly over all distributions in a very
large class,” for example requiring the data to be independent and identically distributed,
or from a stationary, mixing stochastic process. Another branch of learning theory does
avoid making any probabilistic assumptions, getting results which hold universally across
all possible data sets, and again these results apply to Bayesian updating, at least over some
parameter spaces (Cesa-Bianchi and Lugosi, 2006|). However, these results are all of the
form “in retrospect, the posterior predictive distribution will have predicted almost as well
as the best individual model could have done,” speaking entirely about performance on the
past training data and revealing nothing about extrapolation to so-far unobserved cases.

To sum up, one is free to describe statistical inference as a theory of inductive logic, but
these would be inductions which are deductively guaranteed by the probabilistic assump-
tions of stochastic models. We can see no interesting and correct sense in which Bayesian
statistics is a logic of induction which does not equally imply that frequentist statistics is
also a theory of inductive inference (cf. Mayo and Cox, 2006), which is to say, not very
inductive at all.

6 What About Popper and Kuhn?

The two most famous philosophers of science are undoubtedly Karl |Popper| (1934/1959))
and Thomas |Kuhn (1970), and if statisticians (like other non-philosophers) know about
philosophy of science at all, it is generally some version of their ideas. It may therefore
help readers for see how our ideas relate to theirs. We do not pretend that our sketch fully
portrays these figures, let alone the literatures of exegesis and controversy they inspired, or
even how the philosophy of science has moved on since 1970.

Popper’s key idea was that of “falsification,” or “conjectures and refutations.” The in-
spiring example, for Popper, was the replacement of classical physics, after several centuries
as the core of the best-established science, by modern physics, especially the replacement
of Newtonian gravitation by Einstein’s general relativity. Science, for Popper, advances by
scientists advancing theories which make strong, wide-ranging predictions capable of being
refuted by observations. A good experiment or observational study is one which tests a
specific theory (or theories) by confronting their predictions with data in such a way that a
match is not automatically assured; good studies are designed with theories in mind, to give
them a chance to fail. Theories which conflict with any evidence must be rejected, since a
single counter-example implies that a generalization is false. Theories which are not falsi-
fiable by any conceivable evidence are, for Popper, simply not scientific, though they may
have other virtues['8 Even those falsifiable theories which have survived contact with data

18This “demarcation criterion” has received a lot of criticism, much of it justified. The question of what
makes something “scientific” is fortunately not one we have to answer; cf. [Laudan| (1996] chs. 11-12) and
Ziman| (2000).
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so far must be regarded as more or less provisional, since no finite amount of data can ever
establish a generalization, nor is there any non-circular principle of induction which could
let us regard theories which are compatible with lots of evidence are probably truem Since
people are fallible, and often obstinate and overly fond of their own ideas, the objectivity of
the process which tests conjectures lies not in the emotional detachment and impartiality
of individual scientists, but rather in the scientific community being organized in certain
ways, with certain institutions, norms and traditions, so that individuals’ prejudices more
or less wash out (Popper} 1945, chs. 23-24).

Clearly, we find much here to agree with, especially the general hypothetico-deductive
view of scientific method and the anti-inductivist stance. On the other hand, Popper’s
specific ideas about testing require, at the least, substantial modification. His idea of a test
comes down to the rule of deduction which says that if p implies ¢, and ¢ is false, then p must
be false, with the roles of p and ¢ being played by hypotheses and data, respectively. This
is plainly inadequate for statistical hypotheses, yet, as critics have noted since [Braithwaite
(1953) at least, he oddly ignored the theory of statistical hypothesis testingm It is possible
to do better, both through standard hypothesis tests and the kind of predictive checks we
have described. In particular, as Mayo| (1996)) has emphasized, it is vital to consider the
severity of tests, their capacity to detect violations of hypotheses when they are present,
since it is really only passing severe tests which provides evidence for hypotheses.

Popper tried to say how science ought to work, supplemented by arguments that his
ideals could at least be approximated and often had been. Kuhn’s work, by contrast, ac-
count, in contrast, was much more an attempt to describe how science had, in point of
historical fact, developed, supported by arguments that alternatives were infeasible, from
which some morals might be drawn. His central idea was that of a “paradigm,” a scientific
problem and its solution which served as a model or exemplar, so that solutions to other
problems could be developed in imitation of it@ Paradigms come along with presupposi-
tions about the terms available for describing problems and their solutions, what counts as
a valid problem, what counts as a solution, background assumptions which can be taken
as a matter of course, etc. Once a scientific community accepts a paradigm and all that
goes with it, its members can communicate with one another, and get on with the business
of “puzzle solving,” rather than arguing about what they should be doing. Such “normal
science” includes a certain amount of developing and testing of hypotheses but leaves the
central presuppositions of the paradigm unquestioned.

During periods of normal science, according to Kuhn, there will always be some “anoma-
lies” —things within the domain of the paradigm which it currently cannot explain, or even
seem to refute its assumptions. These are generally ignored, or at most regarded as problems
which somebody ought to investigate eventually. (Is a special adjustment for odd local

9Ppopper tried to work out notions of “corroboration” and increasing truth content, or “verisimilitude,”
that fit with these stances, but these are generally regarded as failures.

29We have generally found Popper’s ideas on probability and statistics to be of little use and will not
discuss them here.

21Examples include Newton’s deduction of Kepler’s laws of planetary motion and other facts of astronomy
from the inverse square law of gravitation, or Planck’s derivation of the black-body radiation distribution
from Boltzmann’s statistical mechanics and the quantization of the electromagnetic field. An internal ex-
ample for statistics might be the way the Neyman-Pearson lemma inspired the search for uniformly most
powerful tests in a variety of complicated situations.
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circumstances called for? Might there be some clever calculational trick which fixes things?
How sound are those anomalous observations?) More formally, Kuhn invokes the “Quine-
Duhem thesis” (Quine, (1961 [Duhem, 1914/1954). A paradigm only makes predictions
about observations in conjunction with “auxiliary” hypotheses about specific circumstances,
measurement procedures, etc. If the predictions are wrong, Quine and Duhem claimed that
one is always free to fix the blame on the auxiliary hypotheses, and preserve belief in the
core assumptions of the paradigm “come what may.”lﬂ The Quine-Duhem thesis was also
used by |Lakatos| (1978)) as part of his “methodology of scientific research programmes,” a
falsificationism more historically oriented than Popper’s distinguishing between progressive
development of auxiliary hypotheses and degenerate research programs where auxiliaries
become ad hoc devices for saving core assumptions from data.

According to Kuhn, however, anomalies can accumulate, becoming so serious as to create
a crisis for the paradigm, beginning a period of “revolutionary science.” It is then that a
new paradigm can form, one which is generally “incommensurable” with the old: it makes
different presuppositions, takes a different problem and its solution as exemplars, re-defines
the meaning of terms. Kuhn insisted that scientists who retain the old paradigm are not
being irrational, because (by Quine-Duhem) they can always explain away the anomalies
somehow; but neither are the scientists who embrace and develop the new paradigm being
irrational. Switching to the new paradigm is more like a bistable illusion flipping (the
apparent duck becomes an obvious rabbit) than any process of ratiocination governed by
sound rules of method 2]

In some way, Kuhn’s distinction between normal and revolutionary science is analogous
to the distinction between learning within a Bayesian model, and checking the model as
preparation to discard or expand it. Just as the work of normal science proceeds within
the presuppositions of the paradigm, updating a posterior distribution by conditioning
on new data takes the assumptions embodied in the prior distribution and the likelihood
function as unchallengeable truths. Model checking, on the other hand, corresponds to the
identification of anomalies, with a switch to a new model when they become intolerable.
Even the problems with translations between paradigms have something of a counterpart in
statistical practice; for example, the intercept coefficients in a varying-intercept, constant-
slope regression model have a somewhat different meaning than do the intercepts in a
varying-slope model. We do not want to push the analogy too far, however, since most
model checking and model re-formulation would by Kuhn have been regarded as puzzle-
solving within a single paradigm, and his views of how people switch between paradigms

22This thesis can be attacked from many directions, perhaps the most vulnerable being that one can often
find multiple lines of evidence which bear on either the main principles or the auxiliary hypotheses separately,
thereby localizing the problems (Glymour, [1980; |[Kitcher| 1993} [Laudan) |1996; |Mayo, [1996).

23Salmon/ (1990) proposed a connection between Kuhn and Bayesian reasoning, suggesting that the choice
between paradigms could be made rationally by using Bayes’s rule to compute their posterior probabilities,
with the prior probabilities for the paradigms encoding such things as preferences for parsimony. This has
at least three big problems. First, all our earlier objections to using posterior probabilities to chose between
theories apply, with all the more force because every paradigm is compatible with a broad range of specific
theories. Second, devising priors encoding those methodological preferences—particularly a non-vacuous
preference for parsimony—is hard to impossible (Kelly} 2010)). Third, it implies a truly remarkable form
of Platonism: for scientists to give a paradigm positive posterior probability, they must, by Bayes’s rule,
have always given it strictly positive prior probability, even before having encountered a statement of the
paradigm.
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are, as we just saw, rather different.

Kuhn’s ideas about scientific revolutions are famous because they raise so many disturb-
ing questions about the scientific enterprise. For instance, there has been considerable con-
troversy over whether Kuhn believed in any notion of scientific progress, and over whether
or not he should have, given his theory. Yet detailed historical case studies (Donovan et al.|
1988) have shown that Kuhn’s picture of sharp breaks between normal and revolutionary
science is hard to sustain. (Arguably this is true even of Kuhn, [1957.) The leads to a
tendency, already remarked by [Toulmin| (1972, pp. 112-17), to either expand paradigms or
to shrink them. Expanding paradigms into persistent and all-embracing, because abstract
and vague, bodies of ideas lets one preserve the idea of abrupt breaks in thought, but makes
them rare and leaves almost everything to puzzle-solving normal science. (In the limit,
there has only been one paradigm in astronomy since the Mesopotamians, something like
“Many lights in the night sky are objects which are very large but very far away, and they
move in interrelated, mathematically-describable, discernible patterns.”) This corresponds,
we might say, to relentlessly enlarging the support of the prior. The other alternative is to
shrink paradigms into increasingly concrete, specific theories and even models, making the
standard for a “revolutionary” change very small indeed, in the limit reaching any kind of
conceptual change whatsoever.

We suggest that there is actually some validity to both moves, that there is a sort of
(weak) self-similarity involved in scientific change. Every scale of size and complexity, from
local problem solving to big-picture science, features progress of the “normal science” type,
punctuated by occasional revolutions. For example, in working on an applied research or
consulting problem, one typically will start in a certain direction, then suddenly realize one
was thinking about it wrong, then move forward, and so forth. In a consulting setting, this
reevaluation can happen several times in a couple of hours. At a slightly longer time scale,
we commonly reassess any approach to an applied problem after a few months, realizing
there was some key feature of the problem we were misunderstanding, and so forth. There
is a link between the size and the typical time scales of these changes, with small revolutions
occurring fairly frequently (every few minutes for an exam-type problem), up to every few
decades for a major scientific consensus. (This is related to but somewhat different from the
recursive subject-matter divisions discussed by Abbott/ [2001.) The big changes are more
exciting, even glamorous, but they rest on the hard work of extending the implications of
theories far enough that they can be decisively refuted.

To sum up, our views are much closer to Popper’s than to Kuhn’s. The latter encouraged
a close attention to the history of science and to explaining the process of scientific change,
as well as putting on the agenda many genuinely deep questions, such as when and how
scientific fields achieve consensus. There are even analogies between Kuhn’s ideas and what
happens in good data-analytic practice. Fundamentally, however, we feel that deductive
model checking is central to statistical and scientific progress, and that it is the threat of
such checks that motivates us to perform inferences within complex models that we know
ahead of time to be false.
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7 Why does this matter?

Philosophy matters to practitioners because they use philosophy to guide their practice; even
those who believe themselves quite exempt from any philosophical influences are usually
the slaves of some defunct methodologist. The idea of Bayesian inference as inductive,
culminating in the computation of the posterior probability of scientific hypotheses, has
had malign effects on statistical practice. At best, the inductivist view has encouraged
researchers to fit and compare models without checking them; at worst, theorists have
actively discouraged practitioners from performing model checking because it does not fit
into their framework.

In our hypothetico-deductive view of data analysis, we build a statistical model out of
available parts and drive it as far as it can take us, and then a little farther. When the model
breaks down, we dissect it and figure out what went wrong. For Bayesian models, the most
useful way of figuring out how the model breaks down is through posterior predictive checks,
creating simulations of the data and comparing them to the actual data. The comparison
can often be done visually; see Gelman et al. (2003, ch. 6) for a range of examples. Once we
have an idea about where the problem lies, we can tinker with the model, or perhaps try
a radically new design. Either way, we are using deductive reasoning as a tool to get the
most out of a model, and we test the model—it is falsifiable, and when it is consequentially
falsified, we alter or abandon it. None of this is especially subjective, or at least no more so
than any other kind of scientific inquiry, which likewise requires choices as to the problem
to study, the data to use, the models to employ, etc.—but these choices are by no means
arbitrary whims, uncontrolled by objective conditions.

Conversely, a problem with the inductive philosophy of Bayesian statistics—in which
science “learns” by updating the probabilities that various competing models are true—is
that it assumes that the true model (or, at least, the models among which we will choose
or average over) is one of the possibilities being considered. This does not fit our own
experiences of learning by finding that a model doesn’t fit and needing to expand beyond
the existing class of models to fix the problem.

We fear that a philosophy of Bayesian statistics as subjective, inductive inference can
encourage a complacency about picking or averaging over existing models rather than trying
to falsify and go further@ Likelihood and Bayesian inference are powerful, and with great
power comes great responsibility. Complex models can and should be checked and falsified.
This is how we can learn from our mistakes.
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