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Abstract: The paper presents evidence that econometric techniques 
based on variance- L2 norm are flawed –and do not replicate. The result 
is un-computability of role of tail events. The paper proposes a 
methodology to calibrate decisions to the degree (and computability) of 
forecast error. It classifies decision payoffs in two types: simple payoffs 
(true/false or binary) and complex (higher moments); and randomness 
into type-1 (thin tails) and type-2 (true fat tails) and shows the errors 
for the estimation of small probability payoffs for type 2 randomness. 
The Fourth Quadrant is where payoffs are complex with type-2 
randomness. We propose solutions to mitigate the effect of the Fourth 
Quadrant based on the nature of complex systems.  
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I- BACKGROUND AND PURPOSE1 

It appears scandalous that, of the hundreds of 
thousands of professionals involved, including prime 
public institutions such as the World Bank, the 
International Monetary Fund, different governmental 
agencies and central banks, private institutions such as 
banks, insurance companies, and large corporations, 
and, finally, academic departments, only a few 
individuals considered the possibility of the total 
collapse of the banking system that started in 2007 
(and is still worsening at the time of writing), as well as 
the economic consequences of such breakdown. Not a 
single official forecast turned out to be close to the 
outcome experienced –even those issuing “warnings” 
did not come close to the true gravity of the situation. A 
few warnings about the risks such as Taleb (2007) or 
the works of the economist Nouriel Roubini 2  went 

                                                     
1 A longer literary version of some of the ideas of this 

paper was posted on the web on the EDGE website at 
www.edge.org, eliciting close to 600 comments and letters –
which helped in the elaboration of this version. The author 
thanks the commentators and various reviewers, and Yossi 
Vardi for the material on the events of Sept 18, 2008. 

2 "Dr. Doom", New York Times, August 15, 2008 

unheeded, often ridiculed 3 . Where did such 
sophistication go?  In the face of such proportion of 
miscalculation, it would seem fitting to start an 
examination of the conventional forecasting methods 
for risky outcomes and assess their fragility –indeed the 
size of the damage comes from confidence in 
forecasting and the mis-estimation of potential forecast 
errors for a certain classes of variables and a certain 
type of exposures.  But this was not the first time such 
events happened –nor was it a “Black Swan” (when 
capitalized, an unpredictable outcome of high impact) 
to the observer who took a close view at the robustness 
and empirical validity of the methods used in economic 
forecasting and risk measurement. 

This examination, while grounded in economic data, 
generalizes to all decision-making under uncertainty in 
which there is a potential miscalculation of the risk of a 
consequential rare event. The problem of concern is the 
rare event, and the exposure to it, of the kind that can 
fool a decision maker into taking a certain course of 
action based on the misunderstanding of the risks 
involved. 

 

                                                     
3 Note the irony that the ridicule of the warnings in Taleb 

(2007) and other ideas came from the academic establishment, 
not from the popular press. 
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II- INTRODUCTION 

Forecasting is a serious professional and scientific 
endeavor with a certain purpose, namely to provide 
predictions to be used in formulating  decisions, and 
taking actions. The forecast translates into a decision, 
and, accordingly, the uncertainty attached to the 
forecast, i.e., the error, needs to be endogenous to the 
decision itself. This holds particularly true of risk 
decisions. In other words, the use of the forecast needs 
to be determined –or modified – based on the 
estimated accuracy of the forecast. This, in turn creates 
an interdependency about what we should or should 
not forecast –as some forecasts can be harmful to 
decision makers.  

Figure 1 illustrates such example of harm coming from 
building risk management on the basis of extrapolative 
(usually highly technical) econometric methods, 
providing decision-makers with false confidence about 
the risks, and finding society exposed to several trillions 
in losses that put capitalism on the verge of collapse. 

 

Figure 1- Fat tails at work. Tragic errors from 
underestimating potential losses, best known 
cases: FNMA, Freddie Mac, Bear Stearns, 
Northern Rock, Lehman Brothers, in 
addition to numerous hedge funds.  

 

A key word here, fat tails, implies the outsized role in 
the total statistical properties coming from one single 
observation –such as one massive loss coming after 
years of stable profits or one massive variation unseen 
in past data.  

  - “Thin-tails” allow for an ease in 
forecasting and tractability of the errors;  

 - “Thick-tails” imply more difficulties in 
getting a handle on the forecast errors and the fragility 
of the forecast.  

Close to 1000 financial institutions have shut down in 
2007 and 2008 from the underestimation of outsized 
market moves, with losses up to 3.6 trillion4. Had their 
managers been aware of the unreliability of the 
forecasting methods (which were already apparent in 
the data), they would have requested a different risk 
profile, with more robustness in risk management and 
smaller dependence on complex derivatives.  

A- The Smoking Gun  

We conducted a simple scientific examination of 
economic data, using a near-exhaustive set that 
includes 38 “tradable” variables5  that allow for daily 
prices: major equity indices across the globe (US, 
Europe, Asia, Latin America), most metals (gold, silver), 
major interest rate securities, main currencies –what 
we believe represents around 98% of tradable volume.  

We analyzed the properties of the logarithmic returns 

 where Δt can be 1 day, 10 days, 

or 66 days (non-overlapping intervals)6. 

A conventional test of nonnormality used in the 
literature is the excess kurtosis over the normal 
distribution. Thus we measured the fourth noncentral 

moment of the distributions and 

focused on the stability of the measurements.  

 

                                                     
4 Bloomberg, Feb 5, 2009. 
5 We selected a set of near-exhaustive economic data that 

includes “tradable” securities that allow for a future or a 
forward market: most equity indices across the globe, most 
metals, most interest rate securities, most currencies. We 
collected all available traded futures data –what we believe 
represents around 98% of tradable volume. The reason we 
selected tradable data is because of the certainty of the 
practical aspect of a price on which one can transact: a 
nontradable currency price can lend itself to all manner of 
manipulation. More precisely we selected “continuously rolled” 
futures in which the returns from holding a security are built-
in. For instance analyses of Dow Jones that fail to account for 
dividend payments or analyses of currencies that do not 
include interest rates provide a bias in the measurement of the 
mean and higher moments. 

 
6 By convention we use t=1 as one business day. 
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Table 1 – Fourth Noncentral Moment at daily, 
10-day, 66 day window for the random variables 

 K (1) K(10) K 
(66) 

Max 
Quartic Years 

Australian 
Dollar/USD  6.3 3.8 2.9 0.12 22. 

Australia TB  10y 7.5 6.2 3.5 0.08 25. 
Australia TB 3y 7.5 5.4 4.2 0.06 21. 
BeanOil        5.5 7. 4.9 0.11 47. 
Bonds 30Y 5.6 4.7 3.9 0.02 32. 

Bovespa 24.9 5. 2.3 0.27 16. 

British Pound/USD 6.9 7.4 5.3 0.05 38. 

CAC40 6.5 4.7 3.6 0.05 20. 

Canadian Dollar 7.4 4.1 3.9 0.06 38. 

Cocoa NY       4.9 4. 5.2 0.04 47. 

Coffee NY 10.7 5.2 5.3 0.13 37. 
Copper         6.4 5.5 4.5 0.05 48. 
Corn           9.4 8. 5. 0.18 49. 

Crude Oil 29. 4.7 5.1 0.79 26. 

CT 7.8 4.8 3.7 0.25 48. 

DAX 8. 6.5 3.7 0.2 18. 

Euro Bund   4.9 3.2 3.3 0.06 18. 
Euro 
Currency/DEM 
previously      

5.5 3.8 2.8 0.06 38. 

Eurodollar Depo 
1M 41.5 28. 6. 0.31 19. 

Eurodollar Depo 
3M 21.1 8.1 7. 0.25 28. 

FTSE 15.2 27.4 6.5 0.54 25. 

Gold           11.9 14.5 16.6 0.04 35. 

Heating Oil    20. 4.1 4.4 0.74 31. 

Hogs 4.5 4.6 4.8 0.05 43. 

Jakarta Stock Index 40.5 6.2 4.2 0.19 16. 
Japanese Gov 
Bonds 17.2 16.9 4.3 0.48 24. 

Live Cattle 4.2 4.9 5.6 0.04 44. 

Nasdaq Index 11.4 9.3 5. 0.13 21. 

Natural Gas 6. 3.9 3.8 0.06 19. 

Nikkei 52.6 4. 2.9 0.72 23. 

Notes 5Y       5.1 3.2 2.5 0.06 21. 

Russia RTSI 13.3 6. 7.3 0.13 17. 

Short Sterling 851.8 93. 3. 0.75 17. 

Silver 160.3 22.6 10.2 0.94 46. 

Smallcap 6.1 5.7 6.8 0.06 17. 

SoyBeans 7.1 8.8 6.7 0.17 47. 

SoyMeal 8.9 9.8 8.5 0.09 48. 

Sp500 38.2 7.7 5.1 0.79 56. 

Sugar #11 9.4 6.4 3.8 0.3 48. 

SwissFranc 5.1 3.8 2.6 0.05 38. 

TY10Y Notes 5.9 5.5 4.9 0.1 27. 

Wheat 5.6 6. 6.9 0.02 49. 

Yen/USD 9.7 6.1 2.5 0.27 38. 

 

 

Figure 2 The Smoking Gun: Maximum 
contribution to the Fourth moment Kurtosis 
coming from the largest observation in ~ 
10,000 (29-40 years of daily observations) for 
43 economic variables. For the Gaussian the 
number is expected to be ~.006 for n=10,000. 

 

Figure 3- A selection of 12 most acute cases 
among the 43 economic variables.  

By examining Table 1 and Figures 2 and 3, it appears 
that: 

1) Economic variables (currency rates, 
financial assets, interest rates, commodities) 
are patently fat tailed –to no known exception. 
The literature (Bundt and Murphy, 2006) 
shows that this also applies to data not 
considered here owing to lack of daily changes 
such as GDP, or inflation. 
 

2) Conventional methods, not just those 
relying on a Gaussian distribution, but those 
based on least-square methods, or using 
variance as a measure of dispersion, are 
according to the data, incapable of tracking 
the kind of “fat-tails” we see (more technically, 
in the L2 norm, as will be discussed in section 
V). The reason is that most of the kurtosis is 
concentrated in a few observations, making it 
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practically unknowable using conventional 
methods –see Figure 2. Other tests in Section 
V (the conditional expectation above a threshold) 
show further instability. This incapacitates 
least-square methods, linear regression, and 
similar tools, including risk management 
methods such as “Gaussian Copulas” that rely 
on correlations or any form of the product of 
random variables 7 ,8,9.  

 
3) There is no evidence of “convergence to 

Normality “ by aggregation, i.e., looking at the 
kurtosis of weekly or monthly changes. The 
“fatness” of the tails seems to be conserved 
under aggregation. 

 

Clearly had decision-makers been aware of such facts, 
and such unreliability of conventional methods in 
tracking large deviations, fewer losses would have been 
incurred as they would have reduced exposures in 
some areas rather than rely on more “sophisticated” 
methods. The financial system has been fragile, as this 
simple test shows, with the evidence staring at us all 
along. 

The Problem of Large Deviations 

The empirical problem of small probabilities: The 
central problem addressed in this paper is that small 
probabilities are difficult to estimate empirically (since 
the sample set for these is small), with a greater error 
rate than the one for more frequent events. But since, 
in some domains, their effects can be consequential, 
the error concerning the contribution of small 
probabilities to the total moments of the distribution 
becomes disproportionately large. The problem has 
been dealt with by assuming a probability distribution 
and extrapolating into the tails –which brings model 
error into play. Yet, as we will discuss, model error 
plays a larger role with large deviations. 

Links to decision theory: It is not necessary here to 
argue that a decision maker needs to use a full tableau 
of payoffs (rather than the simple one-dimensional 
average forecast) and that payoffs from decisions vary 
in their sensitivity to forecast errors. For instance, while 
it is acceptable to take a medicine that might be 

                                                     
7 This should predict, for instance, the total failure in 

practice of the ARCH/GARCH methods (Engle, 1982), in spite 
of their successes in-sample, and in academic citations, as they 
are based on the behavior of squares. 

8 One counterintuive result is that sophisticated operators 
do not seem to be aware of the norm they are using, thus mis-
estimating volatility, see Goldstein and Taleb (2007) . 

9  Practitioners have blamed the naive L-2 reliance in the 
risk management of credit risk for the blowup of banks in the 
crisis that started in 2007. See Felix Salmon’s “Recipe For 
Disaster: The Formula That Killed Wall Street” in Wired. 
02/23/2009. 

effective with a 5% error rate, but offers no side effects 
otherwise, it is foolish to play Russian roulette with the 
knowledge one should win with a 5% error rate –
indeed standard theory of choice under uncertainty 
requires the use of full probability distributions, or at 
least a probability associated with every payoff. But so 
far this simple truism has not been integrated into the 
forecasting activity itself –as no classification has been 
made concerning the tractability and consequences of 
the errors. To put it simply, the mere separation 
between forecasting and decisions lacks in both rigor 
and practicality –as it ruptures the link between 
forecast error and the quality of the decision.  

The extensive literature on decision theory and choices 
under uncertainty so far has limited itself to 1) 
assuming known probability distributions (except for a 
few exceptions in which this type of uncertainty has 
been called “ambiguity”10), 2) ignoring fat tails. This 
paper  introduces a new structure of fat tails and 
classification of classes of randomness into the analysis, 
and focuses on the interrelation between errors and 
decisions. To establish a link between decision and 
quality of forecast, this analysis operates along two 
qualitative lines: qualitative differences between 
decisions along their vulnerability to error rates on one 
hand, and qualitative differences between two types of 
distributions of error rates. So there are two distinct 
types of decisions, and two distinct classes of 
randomness. 

This classification allows us to isolate situations in 
which forecasting needs to be suspended –or a revision 
of the decision or exposure may be necessary. What we 
call the “fourth quadrant” is the area in which both the 
magnitude of forecast errors are large and the 
sensitivity on these errors is consequential. What we 
recommend is either changes in the payoff itself 
(clipping exposure) or the shifting of exposures away 
from that part. For that we will provide precise rules.  

The paper is organized as follows. First, we classify 
decisions according to targeted payoffs. Second, we 
discuss the problem of rare events, as these are the 
ones that are both consequential and hard to predict. 
Third, we present the classification of the two 
categories of probability distributions. Finally we 
present the “fourth quadrant” and what we need to 
escape it, thus answering the call for how to handle 
“decision making under low predictability”. 

 

  III- THE DIFFERENT TYPES OF DECISIONS 
The first type of decisions is simple, it aims at "binary" 
payoffs, i.e. you just care if something is true or false. 

                                                     
10 Ellsberg’s paradox, Ellsberg (1961); see also Gardenfors 

and Sahlin (1982), Levi (1986). 
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Very true or very false does not matter. Someone is 
either pregnant or not pregnant. A biological 
experiment in the laboratory or a bet about the 
outcome of an election belong to this category. A 
scientific statement is traditionally considered "true" or 
"false" with some confidence interval. More technically, 

they depend on the zero
th

 moment, namely just on 
probability of events, and not their magnitude —for 
these one just cares about "raw" probability11. 

Clearly these are not very prevalent in life –they mostly 
exist in laboratory experiments and in research papers. 

The second type of decisions depends on more complex 
payoffs. The decision maker does not just care of the 
frequency—but of the impact as well, or, even more 
complex, some function of the impact. So there is 
another layer of uncertainty of impact. These depend 
on higher moments of the distribution. When one 
invests one does not care about the frequency, how 
many times he makes or loses, he cares about the 
expectation: how many times money is made or lost 
times the amount made or lost. We will see that there 
are even more complex decisions. 

More formally, where p[x] is the probability distribution 
of the random variable x, D the domain on which the 
distribution is defined, the payoff λ(x) is defined by 
integrating on D as: 

 

Note that we can incorporate utility or nonlinearities of 
the payoff in the function f(x).  But let us ignore utility 
for the sake of simplification. 

For a simple payoff, f(x) = 1. So L(x) becomes the 
simple probability of exceeding x, since the final 
outcome is either 1 or 0 (or 1 and -1).  

For more complicated payoffs, f(x) can be complex. If 
the payoff depends on a simple expectation, i.e., λ(x) = 
E[x], the corresponding function f(x)=x, and we need 
to ignore frequencies since it is the payoff that matters. 
One can be right 99% of the time, but it does not 
matter at all since with some skewed distribution, the 
consequence on the expectation of the 1% error can be 
too large. Forecasting typically has f(x)=x, a linear 
function of x, while measures such as least squares 
depend on the higher moments f(x)= x2.  

                                                     
11 The difference can be best illustrated as follows. One of 

the most erroneous comparisons encountered in economics is 
the one between “wine rating” and “credit rating” of complex 
securities. Errors in wine rating are hardly consequential for 
the buyer (the “payoff” is binary); errors in credit ratings 
bankrupted banks as these carry massive payoffs. 

Note that some financial products can even depend on 
the fourth moment12.  

 

Table 2 Tableau of Decisions 

Mo 

“True/False” 

 

f(x)=0 

M1 

Expectations 

LINEAR 
PAYOFF 

f(x)=1 

 

M2+ 

 

NONLINEAR 
PAYOFF 

f(x) 
nonlinear(= 
x2, x3, etc.)  

Medicine 
(health not 
epidemics) 

Finance : 
nonleveraged 
Investment 

Derivative 
payoffs 

Psychology 
experiments 

Insurance, 
measures of 
expected 
shortfall 

Dynamically 
hedged 
portfolios 

 

Bets 
(prediction 
markets) 

General risk 
management 

Leveraged 
portfolios 
(around the 
loss point) 

Binary/Digital 
derivatives 

Climate Cubic payoffs 
(strips of out 
of the money 
options) 

Life/Death Economics 
(Policy) 

Errors in 
analyses of 
volatility 

 Security: 
Terrorism, 
Natural 
catastrophes 

Calibration of 
nonlinear 
models 

 Epidemics Expectation 
weighted by 
nonlinear 

                                                     
12 More formally, a linear function with respect to the variable 
x has no second derivative; a convex function is one with a 
positive second derivative. By expanding the expectation of f(x) 
we end up with E[f(x)]= f(x) e[Δx] + ½ f’’(x) E[Δx2] +...  hence 
higher orders matter to the extent of the importance of higher 
derivatives. 
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utility 

 Casinos Kurtosis-based 
positioning 
(“volatility 
trading”) 

Next we turn to a discussion of the problem of rare 
events. 

IV- THE PROBLEM OF RARE EVENTS 
The passage from theory to the real world presents two 
distinct difficulties: "inverse problems" and  "pre-
asymptotics". 
Inverse Problems. It is the greatest difficulty one can 
encounter in deriving properties. In real life we do not 
observe probability distributions. We just observe 
events. So we do not know the statistical properties—
until, of course, after the fact –as we can see in Figure 
1. Given a set of observations, plenty of statistical 
distributions can correspond to the exact same 
realizations—each would extrapolate differently outside 
the set of events on which it was derived. The inverse 
problem is more acute when more theories, more 
distributions can fit a set a data –particularly in the 
presence of nonlinearities or nonparsimonious 
distributions13. 
So this inverse problem is compounded two problems: 

+ The small sample properties of rare events as these 
will be naturally rare in a past sample. It is also acute in 
the presence of nonlinearities as the families of possible 
models/parametrization explode in numbers. 

+ The survivorship bias effect of high impact rare 
events. For negatively skewed distributions (with a 
thicker left tail), the problem is worse. Clearly, 
catastrophic events will be necessarily absent from the 
data –since the survivorship of the variable itself will 
depend on such effect. Thus left tailed distributions will 
1) overestimate the mean; 2) underestimate the 
variance and the risk.  

Figure 4 shows how we normally lack data in the tails; 
Figure 5 shows the empirical effect. 

                                                     
13 A Gaussian distribution is parsimonious (with only two 

parameters to fit). But the problem of adding layers of possible 
jumps, each with a different probabilities opens up endless 
possibilities of combinations of parameters. 

 

Figure 4 The Confirmation Bias At Work. The 
shaded area shows what tend to be missing 
from the observations. For negatively-skewed, 
fat-tailed distributions, we do not see much of 
negative outcomes for surviving entities AND we 
have a small sample in the left tail. This 
illustrates why we tend to see a better past for a 
certain class of time series than warranted. 

 

 

Figure 5 Outliers don’t Predict Outliers. The 
plot shows (in Logarithmic scale) a shortfall in 
one given year against the shortfall the following 
one, repeated throughout for the 43 variables. A 
shortfall here is defined as the sum of deviations 
in excess of 7%. Past large deviations do not 
appear to predict future large deviations, at 
different lags.  
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Figure 6 Regular Events Predict Regular 
Events. This plot shows, by comparison with 
Figure 5, how, for the same variables, mean 
deviation in one period predicts the one in the 
subsequent period. 

Pre-asymptotics. Theories can be extremely 
dangerous when they were derived in idealized 
situations, the asymptote, but are used outside the 
asymptote (its limit, say infinity or the infinitesimal). 
Some asymptotic properties do work well 
preasymptotically (as we’ll see, with type-1 
distributions), which is why casinos do well, but others 
do not, particularly when it comes to the class of fat-
tailed distributions. 

Most statistical education is based on these asymptotic, 
laboratory-style  Platonic properties—yet we take 
economic decisions in the real world that very rarely 
resembles the asymptote.  Most of what students of 
statistics do is assume a structure, typically with a 
known probability. Yet the problem we have is not so 
much making computations once you know the 
probabilities, but finding the true distribution.   

V- THE TWO PROBABILISTIC STRUCTURES 

There are two classes of probability domains—very 
distinct qualitatively and quantitatively –according to 
precise mathematical properties. The first, Type-1, we 
call “benign” thin-tailed nonscalable, the second, Type 
2, “wild” thick tailed scalable, or fractal (the attribution 
“wild” comes from Mandelbrot’s classification of 
Mandelbrot[1963]).  

Taleb (2009) shows that one of the mistakes in the 
economics literature that “fattens  the tails”, with two 
main classes of nonparsimonious models and processes 
(the jump-diffusion processes of Merton, 1973 14  or 
stochastic volatility models such as Engels’ ARCH15) is 
to believe that the second type of distributions are 

                                                     
14 See the general decomposition into diffusion and jump 

(non-scalable) in Merton(1976), Duffie, Pan, and 
Singleton(2000); discussion in Baz and Chacko (2004), Haug 
(2007). 

15 Engle(1982). 

amenable to analyses like the first –except with fatter 
tails. In reality, a fact commonly encountered by 
practitioners, fat-tailed distributions are very unwieldy –
as we can see in Figure 2. Furthermore we often face a 
problem of mistaking one for the other: a process that 
is extremely well behaved, but, on the occasion, 
delivers a very large deviation, can be easily mistaken 
for a thin-tailed one –a problem known as the “problem 
of confirmation” (Taleb, 2007). So we need to be 
suspicious of the mistake of taking Type-2 for Type-1 
as it is more severe (and more readily made) than the 
one in the other direction16.  

As we will saw from the data presented, this 
classification, “fat tails” does not just mean having a 
fourth moment worse than the Gaussian. The Poisson 
distribution, or a mixed distribution with a known 
Poisson jump, would have tails thicker than the 
Gaussian; but this mild form of fat tails can be dealt 
with rather easily –the distribution has all its moments 
finite. The problem comes from the structure of the 
decline in probabilities for larger deviations and the 
ease with which the tools at our disposal can be tripped 
into producing erroneous results from observations of 
data in a finite sample and jumping to wrong decisions.  

The scalable property of Type-2 distributions: 
Take a random variable x. With scalable distributions, 
asymptotically, for x large enough, (i.e. “in the tails”),  

 depends on n, not on x (the same 

property can hold for P[X<n x] for negative values). 
This induces statistical self-similarities. Note that owing 
to the finiteness of the realizations of random variables, 
and lack of samples in the tails we might not be able to 
observe such property –yet not be able to rule out.  

For economic variables, there is no fundamental reason 
for the ratio of “exceedances” (i.e., the cumulative 
probability of exceeding a certain threshold) to decline 
as both the numerator and the denominators are 
multiplied by 2.  

This self-similarity at all scales generates power-law, or 
Paretian, tails, i.e.,  above a crossover point, P[X>x]=K 
x-α.17  18  

                                                     
16 Makridakis et al(1993), Makridakis and Hibon (2000) 

present evidence that more complicated methods of 
forecasting do not deliver superior results to simple ones 
(already bad). The obvious reason is that the errors in 
calibration swell with the complexity of the model. 

17 Scalable discussions: introduced in Mandelbrot(1963), 
Mandelbrot (1997), Mandelbrot and Taleb (2009). 

18 Complexity and power laws: Sornette (2004), Stanley et 
al (2000), Amaral et al (1997); for scalability in different 
aspects of financial data, Gabaix et al. (2003a,2003b,2003c), 
Gopikrishnan et al. (1998,1999,2000), Plerou et al (2000). For 
the statistical mechanics of scale-free networks Barabasi and 
Albert (1999), Albert and Barabasi(2000),Albert et Al (2002). 
The “sandpile effect” (i.e., avalanches and cascades) is 
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Let’s draw the implications of type-2 distributions: 

Finiteness of Moments and Higher Order Effects. 
For thick tailed distributions, moments higher than α 
are not “finite”, i.e., they cannot be computed. They 
can certainly be measured in finite samples –thus giving 
the illusion of finiteness. But they typically show a great 
degree of instability. For instance distribution with 
infinite variance  will always provide, in a sample, the 
illusion of finiteness of variance.  

In other words, while for type-1 errors converge (the 
expectations of higher orders of x, say or order  n, such 
as  1/n! E[xn], where x is the error, do not decline. In 
fact they become explosive).  

 

 

Figure 7-Kurtosis over time: example of an 
“infinite moment”. The graph shows the fourth 
moment for crude oil in annual nonoverlapping 
observations between 1982 and 2008. The 
instability show in the dependence of the 
measurement on the observation window.  

 

2) “Atypicality” of Moves. For thin tailed domains, 
the conditional expectation of a random variable X , 
conditional on its exceeding a number K, converge to K 
for larger values of K.  

 

 

For instance the conditional expectation for a Gaussian 
variable (assuming a mean of 0)  conditional that the 
variable exceeds 0 is approximately .8 standard 
deviations. But with K equals 6 standard deviations, the 
conditional expectation converges to 6 standard 
deviations. The same applies to all the random 
variables that do not have a Paretan tail. This induces 
some “typicality” of large moves. 

For tat tailed variables, such limit does not seem to 
hold:  

                                                                                 
discussed in Bak et al (1987, 1988), Bak (1996),  as power laws 
arise from conditions of self-organized criticality. 

 

where c is a constant. For instance, the conditional 
expectation of a market move, given that it is in excess 
of 3 mean deviations, will be around 5 mean deviations. 
The expectation of a move conditional on it being 
higher than 10 mean deviations will be around 18. This 
property is quite crucial.    

The atypicality of moves has the following significance.  

- One may correctly predict a given event, say, 
a war, a market crash, a credit crisis. But the 
amplitude of the damage will be unpredicted. 
The open-endedness of the outcomes can 
cause severe miscalculation of the expected 
payoff function. For instance the investment 
bank  Morgan Stanley predicted a credit crisis 
but was severely hurt (and needed to be 
rescued) because it did not anticipate the 
extent of the damage. 

-  Methods like Value-at-Risk19 that may 
correctly compute, say, a 99% probability of 
not losing no more than a given sum, called 
“value-at-risk”, will nevertheless miscompute 
the conditional expectation should such 
threshold be exceeded. For instance one has 
99% probability of not exceeding a $1 million 
loss, but should such a loss occur, it can be 
$10 million or $100 million. 

This lack of typicality is of some significance. Stress 
testing and scenario generation are based on assuming 
a “crisis” scenario and checking robustness to it. 
Unfortunately such luxury is not available for fat tails as 
“crisis” does not have a typical magnitude. 

 

The following table shows the evidence of lack of 
convergence to thin tails –hence lack of “typicality” of 
the moves. We stopped for segments for which the 
number of observations becomes small –since lack of 
observations in the tails can provide the illusion of 
“thin” tails. 

Table 3- Conditional expectation for moves > K, 
43 economic variables 

K 
Mean Deviations 

Mean Move (in MAD) in excess of 
K n 

1 2.01443 65958 
2 3.0814 23450 
3 4.19842 8355 

                                                     
19  For the definition of Value at Risk, Jorion (2001); 

critique: Joe Nocera, “Risk Mismanagement: What led to the 
Financial Meltdown”, New York Time Magazine, Jan 2, 2009 
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4 5.33587 3202 
5 6.52524 1360 
6 7.74405 660 
7 9.10917 340 
8 10.3649 192 
9 11.6737 120 
10 13.8726 84 
11 15.3832 65 
12 19.3987 47 
13 21.0189 36 
14 21.7426 29 
15 24.1414 21 
16 25.1188 18 
17 27.8408 13 
18 31.2309 11 
19 35.6161 7 
20 35.9036 6 

 

Table 4 Conditional expectation for moves < K, 
43 economic variables 

K 
Mean Deviations Average Move (in MAD) below K n 

-1 -2.06689 62803 
-2 -3.13423 23258 
-3 -4.24303 8676 
-4 -5.40792 3346 
-5 -6.66288 1415 
-6 -7.95766 689 
-7 -9.43672 392 
-8 -11.0048 226 
-9 -13.158 133 
-10 -14.6851 95 
-11 -17.02 66 
-12 -19.5828 46 
-13 -21.353 38 
-14 -25.0956 27 
-15 -25.7004 22 
-16 -27.5269 20 
-17 -33.6529 16 
-18 -35.0807 14 
-19 -35.5523 13 
-20 -38.7657 11 

 

3) Preasymptotics:  Even if we eventually converge 
to a probability distribution, of the kind well known and 
tractable, it is central that time to convergence plays a 
large role.  

For instance, much of the literature invokes the Central 
Limit Theorem to assume that fat-tailed distribution 
with finite variance converge to a Gaussian under 
summation. If daily errors are fat-tailed, cumulative 
monthly errors will become Gaussian. In practice, this 
does not appear to hold. The data in the appendix 
show that economic variables do not remotely converge 
to the Gaussian under aggregation. 

Furthermore, finiteness of variance is necessary but 
highly insufficient a condition.  Bouchaud and Potters 

[2003] showed that the tails remain heavy while the 
body of the distribution becomes Gaussian. 

 

 

Figure 8- Behavior of Kurtosis under 
aggregation: we lengthen the window of 
changes from 1 day to 50 days. Even for 
variables with infinite fourth moment, the 
kurtosis tends to drop under aggregation in 
small samples, then rise abruptly after a large 
observation.  

 

4) Metrics.  

Much of times series work seems to be based on 
metrics in the square domain, hence patently 
intractable. Define the  norm Lp: 

 

it will increase along with p. The numbers can become 
explosive, with rare events taking a disproportionately 
larger share of the metric at higher orders of p. Thus 
variance/standard deviation (p=2), as a measure of 
dispersion, will be far more unstable than mean 
deviation (p=1). The ratio of mean-deviation to 
variance (Taleb, 2009) is highly unstable for economic 
variables. Thus modelizations based on variance 
become incapacitated. More practically, this means that 
for distribution with finite mean (tail exponent greater 
than 1), the mean deviation is more “robust”20.  

5)  Incidence of Rare Events 

                                                     
20 Note on the weaknesses of nonparametric statistics: 

Mean deviation is often used as robust, nonparametric or 
distribution-free statistic. It does work better than variance, as 
we saw, but does not  contain information on rare events  by 
the argument seen before. Likewise nonparametric statistical 
methods (relying on empirical frequency) will be extremely 
fragile to the “black swan problem”, since the absence of large 
deviations in the past leave us in a near-total opacity about 
their occurrence in the future –as we saw in Figure 4, these are 
confirmatory.  In other words nonparametric statistics, those 
that consist in fitting a kernel to empirical frequencies, 
assume, even more than other methods, that a large deviation 
will have a predecessor. 
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One common error is to believe that thickening the tails 
leads to an increase of the probability of rare events. In 
fact, it usually leads to the decrease of incidence of 
such events, but the magnitude of the event, should it 
happen, will be much larger. 

Take, for instance, a normally distributed random 
variable. The probability of exceeding 1 standard 
deviation is about 16%. Observed returns in the 
markets, with a higher kurtosis, present a lower 
probability, around 7-10% of exceeding the same 
threshold –but the depth of the excursions is greater.  

6) Calibration Errors and Fat Tails 
One does not need to accept power laws to use them. 
A convincing argument is that if we don't know what a 
"typical" event is, fractal power laws are the most 
effective way to discuss the extremes mathematically. 
It does not mean that the real world generator is 
actually a power law—it means that we don't 
understand the structure of the external events it 
delivers and need a tool of analysis so you do not 
become a turkey. Also, fractals simplify the 
mathematical discussions because all you need is 
perturbate one parameter, here the α, and it increases 
or decreases the role of the rare event in the total 
properties. 
Say, for instance, that, in an analysis, you move α from 
2.3 to 2 for data in the publishing business; the sales of 
books in excess of 1 million copies would triple!  This 
method is akin to generating combinations of scenarios 
with series of probabilities and series of payoffs, 
fattening the tail at each time.  

The following argument will help illustrate the general 
problem with forecasting under fat tails. Now the 
problem: Parametrizing a power law lends itself to 
extremely large estimation errors (since heavy tails 
have inverse problems). Small changes in the α main 
parameter used by power laws leads to extremely large 
effects in the tails. Monstrous. 
And we don't observe the α --an uncertainty that 
comes from the measurement error. Figure 9 shows 
more than 40 thousand computations of the tail 
exponent α from different samples of different 
economic variables (data for which it is impossible to 
refute fractal power laws). We clearly have problems 
figuring it what the α is: our results are marred with 
errors. The mean absolute error in the measurement of 
the tail exponent is in excess of 1 (i.e. between α=2 
and α=3). Numerous papers in econophysics found an 
"average" alpha between 2 and 3—but if you process 
the >20 million pieces of data analyzed in the literature, 

you find that the variations between single variables are 
extremely significant21.  

 

Figure 9 Estimation error in α from 40 thousand 
economic variables. 

Now this mean error has massive consequences. Figure 
10 shows the effect: the expected value of your losses 
in excess of a certain amount (called "shortfall") is 
multiplied by >10 from a small change in the α that is 
less than its mean error22.  

 

Figure 10 The value of the expected shortfall 
(expected losses in excess of a certain 
threshold) in response to changes in tail 
exponent α. We can see it explode by an order 
of magnitude. 

 

 

                                                     
21 One aspect of this inverse problem is even pervasive in 

Monte Carlo experiments (much better behaved than the real 
world), see Weron (2001). 

22  Note that the literature on extreme value theory 
(Embrecht et al. , 1997) does not solve much of the problem as 
the calibration errors stay the same. The argument about 
calibration we saw earlier makes the values depend on the 
unknowable tail exponent. This calibration problem explains 
how Extreme Value Theory works better on computers than in 
the real world (and has failed completely in the economic crisis 
of 2008-2009). 



 

  
 
©  Copyright 2009 by N. N. Taleb.  

11 

V-  THE MAP 
First Quadrant: Simple binary decisions, under type-1 
distributions: forecasting is safe. These situations are, 
unfortunately, more common in laboratories and games 
than real life.  We rarely observe these in payoffs in 
economic decision making. Examples: some medical 
decisions, casino bets, prediction markets.  
Second Quadrant: Complex decisions under type-1 
distributions: Statistical methods may work 
satisfactorily, though there are some risks.   True, thin-
tails may not be a panacea owing to preasymptotics, 
lack of independence, and model error. There, clearly, 
are problems there, but these have been addressed 
extensively in the literature (see Freedman, 2007). 

Third Quadrant: Simple decisions, under type-2 
distributions: there is little harm in being wrong –the 
tails do not impact the payoffs. 
Fourth Quadrant: Complex decisions under type-2 
distributions: that is where the problem resides. We 
need to avoid prediction of remote payoffs—though not 
necessarily ordinary ones. Payoffs from remote parts of 
the distribution are more difficult to predict than closer 
parts.  

A general principle is that, while in the first three 
quadrants you can use the best model you can find, 
this is dangerous in the fourth quadrant: no model 
should be better than just any model.  So the idea is to 
exit the fourth quadrant. 

The recommendation is to move into the third quadrant 
–it is not possible to change the distribution; it is 
possible to change the payoff , as will be discussed in 
the next section. 
 

Table 5 The Four Quadrants. 

  

Simple payoffs 

 

 

Complex payoffs 

Distribution  1 
(“thin tailed”) 

First 
Quadrant 

Extremely  

Safe 

        Second 
Quadrant: 

 Safe 

Distribution 2 

(no or unknown 
characteristic 

scale) 

Third 
Quadrant: 

Safe 

Fourth 
Quadrant: 

Dangers23 

 

                                                     
23 The dangers are limited to exposures in the negative 

domain (i.e., adverse payoffs). Some exposures, we will see, 
can be only “positive”. 
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The subtlety is that, while we have a poor idea about 
the expectation in the 4th quadrant, exposures to rare 
events are not symmetric. 

VI- DECISION-MAKING AND FORECASTING IN THE FOURTH 
QUADRANT 

1- Solutions by changing the payoff:   

Finally, the main idea proposed in this paper is to 
endogenize decisions, i.e., escape the 4th quadrant 
whenever possible by changing the payoff in reaction to 
the high degree of unpredictability and the harm it 
causes. How? 

Just consider that the property of “atypicality” of the 
moves can be compensated by truncating the payoffs, 
thus creating an organic “worst case” scenario that is 
resistant to forecast errors. Recall that a binary payoff 
is insensitive to fat tails precisely because above a 
certain level, the domain of integration, changes in 
probabilities do not impact the payoff. So making the 
payoff no longer open-ended mitigates the problems, 
thus making it more tractable mathematically.  

A way to express it using moments: all moments of the 
distribution become finite in the absence of open-ended 
payoffs –by putting a floor L below which f(x) =0, as 
well a ceiling H.  Just consider that if you are 
integrating payoffs in a finite, not open-ended domain, 
i.e. between L and H, respectively, the tails of the 
distributions outside that domain no longer matter. 
Thus the domain of integration becomes the domain of 
payoff. 

 

With an investment portfolio, for instance, it is possible 
to “put a floor” on the payoff using insurance, or, better 
even, by changing the allocation. Insurance products 
are tailored with a maximum payoff; catastrophe 
insurance products are also set with a “cap”, though 
the cap might be high enough to allow for a 
dependence on the error of the distribution24. 

 

The Effect of Skewness: We omitted earlier to 
discuss asymmetry in either the payoff or in the 
distribution. Clearly the Fourth Quadrant can present 
left or right skewness. If we suspect right-skewness, 
the true mean is more likely to be underestimated by 
measurement of past realizations, and the total 
potential is likewise poorly gauged. A biotech company 

                                                     
24 Insurance companies might cap the payoff of a single 

claim, but a collection of capped claims might represent some 
problems as the maximum loss becomes too large as to be 
almost undistinguishable from that with an uncapped payoff. 

(usually) faces positive uncertainty, a bank faces almost 
exclusively negative shocks.  

More significantly, by raising the L (the lower bound), 
one can easily produce positive skewness, with a set 
floor for potential adverse outcomes and open upside. 
For instance what Taleb calls a “barbell” investment 
strategy consists in allocating a high portion of a 
portfolio to T-Bills (or equivalent), say α, with 0<α<1, 
and a small portion (1-α) to high-variance securities. 
While the total portfolio has medium variance,  L= (1-
α) times the face value invested while another portfolio 
of the same variance might lose 100%.  

Convex and Concave to Error: More generally, we 
can consider concave to model error if the payoff from 
the error (obtained by changing the tails of the 
distribution) has a negative second derivative with 
respect to that change in the tails, or is negatively 
skewed (like the payoff of a short option). It will be 
convex if the payoff is positively skewed, (like the 
payoff of a long option). 

The Effect of Leverage in Operations and 
Investment 

Leveraging in finance has the effect of increasing 
concavity to model error. As we will see, it is exactly 
the opposite of redundancy –it causes payoffs to 
increase, but at the costs of an absorbing barrier should 
there be an extreme event that exceeds the allowance 
made in the risk measurement. Redundancy, on the 
other hand, is the equivalent of de-leveraging, i.e. by 
having more idle “inefficient” capital on the side. But a 
a second look at such funds can reveal that there may 
be a direct expected value from being able to benefit 
from opportunities in the event of asset deflation –
hence “idle” capital needs to be analyzed as an option.  

 

2- Solutions by mitigating forecasting 
errors 

Optimization v/s Redundancy. The optimization 
paradigm of the economics literature meets some 
problems in the fourth quadrant: what if we have a 
consequential forecasting error? Aside from the issue 
that the economic agent is optimizing on the future 
states of the world, with a given probability distribution, 
nowhere25  have the equations taken into account the 
possibility of a large deviation that would allow not 
optimizing consumption and having idle capital. Also, 
the psychological literature on well-being (Kahneman, 
1999) shows an extremely concave utility function of 
income —if one spends such income. But if one hides it 
under the mattress, he will be less vulnerable to an 

                                                     
25  Merton 1992, for a discussion of the general  

consumption Capital Asset Pricing Market. 
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extreme event. So there is an enhanced survival 
probability for those who have additional margin. 

While economics have been mired in conventional linear 
analysis, stochastic optimization with Bellman-style 
equations that fall into the category Type-1, some 
intuitions of the point are provided by complex systems. 
One of the central attributes of complex systems is 
redundancy (May et al, 2008).  

Biological systems—those that survived millions of 
years—include a large share of redundancies26 27. Just 
consider the number of double  organs (lungs, kidneys, 
ears).   This may suggest an option-theoretic analysis: 
redundancy is like an option. One certainly pay for it, 
but it may be necessary for survival.   And while 
redundancy means similar functions used by identical 
organs or resources, biological systems have, in 
addition, recourse to “degeneracy”, the possibility of 
one organ to perform more than one function, which is 
the analog of redundancy at a functional level (Edelman 
and Gally, 2001). 

When institutions such as banks optimize, they often do 
not realizing that a simple model error can blow 
through their capital (as it just did).  

 

 

 

                                                     
26 May et al. (2008) 
27 For the scalability of biological systems, see Burlando 

(1993), Harte et al. (1999), Solé et al (1999), Ritchie et al 
(1999), Enquist and Niklas (2001). 

 

Figure 11- Comparison between Gaussian-style 
noise and Type-2 noise with extreme spikes –
which necessitates more redundancy (or 
insurance) than required. Policymakers and 
forecasters were not aware that complex 
systems tend to produce the second type of 
noise. 

 

Examples: In one day in August 2007, Goldman Sachs 
experienced 24 time the average daily transaction 
volume28—would 29 times have blown up the clearing 
system?  Another severe instance of an extreme  
“spike” lies in an event of September 18, 2008, in the 
aftermath of the Lehman Bothers Bankruptcy. 
According to congress documents, only made public in 
February 2009. 

On Thursday (Sept 18), at 11am the Federal 
Reserve noticed a  tremendous draw-down of 
money market accounts in the U.S., to the tune  of 
$550 billion was being drawn out in the matter of an 
hour or two.   

If they had not done that[ add liquidity], their 
estimation is that by 2pm that  afternoon, $5.5 
trillion would have been drawn out of the money 
market  system of the U.S., would have collapsed 
the entire economy of the  U.S., and within 24 hours 
the world economy would have collapsed. It  would 
have been the end of our economic system and our 
political  system as we know it29. 

For naive economics, the best way to effectively reduce 
costs is to minimize redundancy, hence avoiding the 
option premium of insurance. Indeed some systems 
tend to optimize—therefore become more fragile. 
Barabasi and Albert (1999), Albert and Barabasi (2002) 
warned (ahead of the North Eastern power outage of 
August 2003) how electricity grids for example optimize 
to the point of not coping with unexpected surges –
which predicted the possibility of a blackout of the 
magnitude of the one that took place in the North 
Eastern U.S. in August 2003. We cannot discuss "flat 

                                                     
28 Personal communication, Pentagon Highland Forum, 

April meeting, 2008. 
29 http://www.liveleak.com/view?i=ca2_1234032281 
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earth" globalization without realizing that it is 
overoptimized to the point of maximal vulnerability.  

   

2-bTime. It takes much, much longer for a fat-tailed 
time series to reveal its properties –in fact many can in 
short episodes masquerade as thin-tailed. At the worst, 
we don't know how long it would take to know. But we 
can have a pretty clear idea if organically, because of 
the nature of the payoff, the "Black Swan" can hit on 
the left (losses) or on the right (profits).  The point can 
be used in climatic analysis. Things that have worked 
for a long time are preferable—they are more likely to 
have reached their ergodic states.   

2-c The Problem of Moral Hazard. Is optimal to 
make series of annual bonuses betting on hidden risks 
in the Fourth Quadrant, then “blow up”  (Taleb, 2004). 
The problem is that bonus payments are made with a 
higher frequency (i.e. annual) than warranted from the 
statistical properties (when it takes longer to capture 
the statistical properties). 

2-d Metrics. Conventional metrics based on type 1 
randomness fail to produce reliable results –while the 
economics literature is grounded in them. Concepts like 
"standard deviation" are not stable and do not measure 
anything in the Fourth Quadrant. So does "linear 
regression" (the errors are in the fourth quadrant), 
"Sharpe ratio", Markowitz optimal portfolio30, ANOVA, 
Least square, etc. "Variance"/"standard deviation" are 
terms invented years ago when we had no computers. 
Note that from the data shown and the instability of the 
kurtosis, no sample will ever deliver the true variance in 
reasonable time.   Yet, note that truncating payoffs 
blunt the effects of the inadequacy of the metrics. 

VI-  CONCLUSION 
To conclude, we offered a method of robustifying 
payoffs from large deviations and making forecasts 
possible to perform. The extensions can be generalized 
to larger notion of society’s safety – for instance how 
we should build systems (internet, banking structure, 
etc.) impervious to random effects.  

                                                     
30 The framework of Markowitz (1952) as it is built on L2 

norm, does not stand any form of empirical or even theoretical 
validity, owing to the dominance higher moment effects, even 
in the presence of “finite” variance, see Taleb (2009). 
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