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Abstract: The paper presents evidence that econometric techniques
based on variance- L? norm are flawed —and do not replicate. The result
is un-computability of role of tail events. The paper proposes a
methodology to calibrate decisions to the degree (and computability) of
forecast error. It classifies decision payoffs in two types: simple payoffs
(true/false or binary) and complex (higher moments); and randomness
into type-1 (thin tails) and type-2 (true fat tails) and shows the errors
for the estimation of small probability payoffs for type 2 randomness.
The Fourth Quadrant is where payoffs are complex with type-2
randomness. We propose solutions to mitigate the effect of the Fourth
Quadrant based on the nature of complex systems.
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I- BACKGROUND AND PURPOSE*!

It appears scandalous that, of the hundreds of
thousands of professionals involved, including prime
public institutions such as the World Bank, the
International Monetary Fund, different governmental
agencies and central banks, private institutions such as
banks, insurance companies, and large corporations,
and, finally, academic departments, only a few
individuals considered the possibility of the total
collapse of the banking system that started in 2007
(and is still worsening at the time of writing), as well as
the economic consequences of such breakdown. Not a
single official forecast turned out to be close to the
outcome experienced —even those issuing “warnings”
did not come close to the true gravity of the situation. A
few warnings about the risks such as Taleb (2007) or
the works of the economist Nouriel Roubini? went

1A longer literary version of some of the ideas of this
paper was posted on the web on the EDGE website at
www.edge.org, eliciting close to 600 comments and letters —
which helped in the elaboration of this version. The author
thanks the commentators and various reviewers, and Yossi
Vardi for the material on the events of Sept 18, 2008.

2"Dr. Doom", New York Times, August 15, 2008
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unheeded, often ridiculed 3 . Where did such
sophistication go? In the face of such proportion of
miscalculation, it would seem fitting to start an
examination of the conventional forecasting methods
for risky outcomes and assess their fragility —indeed the
size of the damage comes from confidence in
forecasting and the mis-estimation of potential forecast
errors for a certain classes of variables and a certain
type of exposures. But this was not the first time such
events happened —nor was it a “Black Swan” (when
capitalized, an unpredictable outcome of high impact)
to the observer who took a close view at the robustness
and empirical validity of the methods used in economic
forecasting and risk measurement.

This examination, while grounded in economic data,
generalizes to all decision-making under uncertainty in
which there is a potential miscalculation of the risk of a
consequential rare event. The problem of concern is the
rare event, and the exposure to it, of the kind that can
fool a decision maker into taking a certain course of
action based on the misunderstanding of the risks
involved.

3 Note the irony that the ridicule of the warnings in Taleb
(2007) and other ideas came from the academic establishment,
not from the popular press.
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II- INTRODUCTION

Forecasting is a serious professional and scientific
endeavor with a certain purpose, namely to provide
predictions to be used in formulating decisions, and
taking actions. The forecast translates into a decision,
and, accordingly, the uncertainty attached to the
forecast, i.e., the error, needs to be endogenous to the
decision itself. This holds particularly true of risk
decisions. In other words, the use of the forecast needs
to be determined —or modified — based on the
estimated accuracy of the forecast. This, in turn creates
an interdependency about what we should or should
not forecast —as some forecasts can be harmful to
decision makers.

Figure 1 illustrates such example of harm coming from
building risk management on the basis of extrapolative
(usually highly technical) econometric methods,
providing decision-makers with false confidence about
the risks, and finding society exposed to several trillions
in losses that put capitalism on the verge of collapse.
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Figure 1- Fat tails at work. Tragic errors from
underestimating potential losses, best known
cases: FNMA, Freddie Mac, Bear Stearns,
Northern Rock, Lehman Brothers, in
addition to numerous hedge funds.

A key word here, fat tails, implies the outsized role in
the total statistical properties coming from one single
observation —such as one massive loss coming after
years of stable profits or one massive variation unseen
in past data.

- “Thin-tails” allow for an ease in

forecasting and tractability of the errors;
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- “Thick-tails” imply more difficulties in
getting a handle on the forecast errors and the fragility
of the forecast.

Close to 1000 financial institutions have shut down in
2007 and 2008 from the underestimation of outsized
market moves, with losses up to 3.6 trillion®. Had their
managers been aware of the unreliability of the
forecasting methods (which were already apparent in
the data), they would have requested a different risk
profile, with more robustness in risk management and
smaller dependence on complex derivatives.

A- The Smoking Gun

We conducted a simple scientific examination of
economic data, using a near-exhaustive set that
includes 38 “tradable” variables® that allow for daily
prices: major equity indices across the globe (US,
Europe, Asia, Latin America), most metals (gold, silver),
major interest rate securities, main currencies —what
we believe represents around 98% of tradable volume.

We analyzed the properties of the logarithmic returns

t

Lo = Log where At can be 1 day, 10 days,
—At

or 66 days (non-overlapping intervals)®.

A conventional test of nonnormality used in the
literature is the excess kurtosis over the normal
distribution. Thus we measured the fourth noncentral

4

Err,m N

=——— of the distributions and
n

focused on the stability of the measurements.

moment k(Af) =

4 Bloomberg, Feb 5, 2009.

5 We selected a set of near-exhaustive economic data that
includes “tradable” securities that allow for a future or a
forward market: most equity indices across the globe, most
metals, most interest rate securities, most currencies. We
collected all available traded futures data —what we believe
represents around 98% of tradable volume. The reason we
selected tradable data is because of the certainty of the
practical aspect of a price on which one can transact: a
nontradable currency price can lend itself to all manner of
manipulation. More precisely we selected “continuously rolled”
futures in which the returns from holding a security are built-
in. For instance analyses of Dow Jones that fail to account for
dividend payments or analyses of currencies that do not
include interest rates provide a bias in the measurement of the
mean and higher moments.

6 By convention we use t=1 as one business day.
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Table 1 — Fourth Noncentral Moment at daily,
10-day, 66 day window for the random variables

K1) K(10) g 6 g::r e Years

ggfgf}gg‘D 63 38 29 012 2.
Australia TB 10y 7.5 6.2 35 0.08 25.
Australia TB 3y 75 54 42 0.06 21.
BeanOil 55 7. 49 0.11 47.
Bonds 30Y 5.6 47 39 0.02 32.
Bovespa 249 5. 23 0.27 16.
British Pound/USD 6.9 74 53 0.05 38.
CAC40 6.5 47 3.6 0.05 20.
Canadian Dollar 74 4.1 39 0.06 38.
Cocoa NY 49 4. 52 0.04 47.
Coffee NY 10.7 52 53 0.13 37.
Copper 64 55 45 0.05 48.
Corn 94 8. 5. 0.18 49.
Crude Oil 29. 4.7 5.1 0.79 26.
CT 7.8 48 3.7 0.25 48.
DAX 8. 6.5 37 0.2 18.
Euro Bund 49 32 33 0.06 18.
Euro

Currency/DEM 55 3.8 2.8 0.06 38.
previously

]151‘\‘4”‘10”” Depo 415 28, 6. 031 19.
]351‘\‘;0‘10”” Depo 911 81 7. o025 28.
FTSE 152 274 6.5 0.54 25.
Gold 11.9 14.5 166  0.04 35.
Heating Oil 20. 4.1 44 0.74 31.
Hogs 45 4.6 48 0.05 43.
Jakarta Stock Index ~ 40.5 6.2 42 0.19 16.
ljsagsg:“ Gov 172 169 43 048 24,
Live Cattle 42 49 5.6 0.04 44.
Nasdaq Index 114 93 5. 0.13 21.
Natural Gas 6. 39 38 0.06 19.
Nikkei 52.6 4. 29 0.72 23.
Notes 5Y 5.1 32 2.5 0.06 21.
Russia RTSI 13.3 6. 73 0.13 17.
Short Sterling 851.8 93. 3. 0.75 17.
Silver 1603 226 102 094 46.
Smallcap 6.1 57 6.8 0.06 17.
SoyBeans 7.1 8.8 6.7 0.17 47.
SoyMeal 8.9 9.8 8.5 0.09 48.
Sp500 382 77 5.1 0.79 56.
Sugar #11 94 64 3.8 0.3 48.
SwissFranc 5.1 38 2.6 0.05 38.
TY10Y Notes 59 55 49 0.1 27.
Wheat 5.6 6. 6.9 0.02 49.
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Figure 2 The Smoking Gun: Maximum
contribution to the Fourth moment Kurtosis
coming from the largest observation in ~
10,000 (29-40 years of daily observations) for
43 economic variables. For the Gaussian the
number is expected to be ~.006 for n=10,000.
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Figure 3- A selection of 12 most acute cases
among the 43 economic variables.

By examining Table 1 and Figures 2 and 3, it appears

that:

1)

Economic variables (currency rates,
financial assets, interest rates, commodities)
are patently fat tailed —to no known exception.
The literature (Bundt and Murphy, 2006)
shows that this also applies to data not
considered here owing to lack of daily changes
such as GDP, or inflation.

Conventional methods, not just those
relying on a Gaussian distribution, but those
based on least-square methods, or using
variance as a measure of dispersion, are
according to the data, incapable of tracking
the kind of “fat-tails” we see (more technically,
in the L? norm, as will be discussed in section
V). The reason is that most of the kurtosis is
concentrated in a few observations, making it



practically unknowable using conventional
methods —see Figure 2. Other tests in Section
V (the conditional expectation above a threshold)
show further instability. This incapacitates
least-square methods, linear regression, and
similar tools, including risk management
methods such as “Gaussian Copulas” that rely
on correlations or any form of the product of
random variables 7 8 °.

3) There is no evidence of “convergence to
Normality * by aggregation, i.e., looking at the
kurtosis of weekly or monthly changes. The
“fatness” of the tails seems to be conserved
under aggregation.

Clearly had decision-makers been aware of such facts,
and such unreliability of conventional methods in
tracking large deviations, fewer losses would have been
incurred as they would have reduced exposures in
some areas rather than rely on more “sophisticated”
methods. The financial system has been fragile, as this
simple test shows, with the evidence staring at us all
along.

The Problem of Large Deviations

The empirical problem of small probabilities: The
central problem addressed in this paper is that small
probabilities are difficult to estimate empirically (since
the sample set for these is small), with a greater error
rate than the one for more frequent events. But since,
in some domains, their effects can be consequential,
the error concerning the contribution of small
probabilities to the total moments of the distribution
becomes disproportionately large. The problem has
been dealt with by assuming a probability distribution
and extrapolating into the tails —which brings model
error into play. Yet, as we will discuss, model error
plays a larger role with large deviations.

Links to decision theory: 1t is not necessary here to
argue that a decision maker needs to use a full tableau
of payoffs (rather than the simple one-dimensional
average forecast) and that payoffs from decisions vary
in their sensitivity to forecast errors. For instance, while
it is acceptable to take a medicine that might be

7 This should predict, for instance, the total failure in
practice of the ARCH/GARCH methods (Engle, 1982), in spite
of their successes in-sample, and in academic citations, as they
are based on the behavior of squares.

8 One counterintuive result is that sophisticated operators
do not seem to be aware of the norm they are using, thus mis-
estimating volatility, see Goldstein and Taleb (2007) .

9 Practitioners have blamed the naive L-2 reliance in the
risk management of credit risk for the blowup of banks in the
crisis that started in 2007. See Felix Salmon’s “Recipe For
Disaster: The Formula That Killed Wall Street” in Wired.
02/23/2009.
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effective with a 5% error rate, but offers no side effects
otherwise, it is foolish to play Russian roulette with the
knowledge one should win with a 5% error rate —
indeed standard theory of choice under uncertainty
requires the use of full probability distributions, or at
least a probability associated with every payoff. But so
far this simple truism has not been integrated into the
forecasting activity itself —as no classification has been
made concerning the tractability and consequences of
the errors. To put it simply, the mere separation
between forecasting and decisions lacks in both rigor
and practicality —as it ruptures the link between
forecast error and the quality of the decision.

The extensive literature on decision theory and choices
under uncertainty so far has limited itself to 1)
assuming known probability distributions (except for a
few exceptions in which this type of uncertainty has
been called “ambiguity”'®), 2) ignoring fat tails. This
paper introduces a new structure of fat tails and
classification of classes of randomness into the analysis,
and focuses on the interrelation between errors and
decisions. To establish a link between decision and
quality of forecast, this analysis operates along two
qualitative lines: qualitative differences between
decisions along their vulnerability to error rates on one
hand, and qualitative differences between two types of
distributions of error rates. So there are two distinct
types of decisions, and two distinct classes of
randomness.

This classification allows us to isolate situations in
which forecasting needs to be suspended —or a revision
of the decision or exposure may be necessary. What we
call the “fourth quadrant” is the area in which both the
magnitude of forecast errors are large and the
sensitivity on these errors is consequential. What we
recommend is either changes in the payoff itself
(clipping exposure) or the shifting of exposures away
from that part. For that we will provide precise rules.

The paper is organized as follows. First, we classify
decisions according to targeted payoffs. Second, we
discuss the problem of rare events, as these are the
ones that are both consequential and hard to predict.
Third, we present the classification of the two
categories of probability distributions. Finally we
present the “fourth quadrant” and what we need to
escape it, thus answering the call for how to handle
“decision making under low predictability”.

III- THE DIFFERENT TYPES OF DECISIONS

The first type of decisions is simple, it aims at "binary"
payoffs, i.e. you just care if something is true or false.

1o Ellsberg’s paradox, Ellsberg (1961); see also Gardenfors
and Sahlin (1982), Levi (1986).



Very true or very false does not matter. Someone is
either pregnant or not pregnant. A biological
experiment in the laboratory or a bet about the
outcome of an election belong to this category. A
scientific statement is traditionally considered "true" or
"false" with some confidence interval. More technically,

they depend on the zeroth moment, namely just on
probability of events, and not their magnitude —for
these one just cares about "raw" probability*!.

Clearly these are not very prevalent in life —they mostly
exist in laboratory experiments and in research papers.

The second type of decisions depends on more complex
payoffs. The decision maker does not just care of the
frequency—but of the impact as well, or, even more
complex, some function of the impact. So there is
another layer of uncertainty of impact. These depend
on higher moments of the distribution. When one
invests one does not care about the frequency, how
many times he makes or loses, he cares about the
expectation: how many times money is made or lost
times the amount made or lost. We will see that there
are even more complex decisions.

More formally, where p/x] is the probability distribution
of the random variable x, D the domain on which the
distribution is defined, the payoff A(x) is defined by
integrating on D as:

Ax) = [ f(x) p(x)dx

Note that we can incorporate utility or nonlinearities of
the payoff in the function f(x). But let us ignore utility
for the sake of simplification.

For a simple payoff, f{x) = 1. So L(x) becomes the
simple probability of exceeding x, since the final
outcome is either 1 or 0 (or 1 and -1).

For more complicated payoffs, f(x) can be complex. If
the payoff depends on a simple expectation, i.e., A(x) =
E[x], the corresponding function f(x)=x, and we need
to ignore frequencies since it is the payoff that matters.
One can be right 99% of the time, but it does not
matter at all since with some skewed distribution, the
conseqguence on the expectation of the 1% error can be
too large. Forecasting typically has f(x)=x, a linear
function of x, while measures such as least squares
depend on the higher moments f(x)= X%

1 The difference can be best illustrated as follows. One of
the most erroneous comparisons encountered in economics is
the one between “wine rating” and “credit rating” of complex
securities. Errors in wine rating are hardly consequential for
the buyer (the “payoff” is binary); errors in credit ratings
bankrupted banks as these carry massive payoffs.

© Copyright 2009 by N. N. Taleb.

Note that some financial products can even depend on

the fourth momen

Table 2 Tableau of Decisions

2,

Mo M1 M2+
“True/False” Expectations
LINEAR NONLINEAR
f(x)=0 PAYOFF PAYOFF
f(x)=1 f(x)
nonlinear(=
X2, X2, etc.)
Medicine Finance Derivative
(health  not nonleveraged payoffs
epidemics) Investment
Psychology Insurance, Dynamically
experiments measures of hedged
expected portfolios
shortfall
Bets General risk Leveraged
(prediction management portfolios
markets) (around the
loss point)
Binary/Digital Climate Cubic payoffs
derivatives (strips of out
of the money
options)
Life/Death Economics Errors in
(Policy) analyses of
volatility
Security: Calibration of
Terrorism, nonlinear
Natural models
catastrophes
Epidemics Expectation
weighted by
nonlinear

12 More formally, a linear function with respect to the variable
x has no second derivative; a convex function is one with a
positive second derivative. By expanding the expectation of f(x)
we end up with E[f(x)]= f(x) e[Ax] + V2 {’(x) E[Ax2] +... hence
higher orders matter to the extent of the importance of higher
derivatives.



utility

Casinos Kurtosis-based
positioning
(“volatility
trading”)

Next we turn to a discussion of the problem of rare
events.

IV- THE PROBLEM OF RARE EVENTS

The passage from theory to the real world presents two
distinct difficulties: "inverse problems" and "pre-
asymptotics".

Inverse Problems. It is the greatest difficulty one can
encounter in deriving properties. In real life we do not
observe probability distributions. We just observe
events. So we do not know the statistical properties—
until, of course, after the fact —as we can see in Figure
1. Given a set of observations, plenty of statistical
distributions can correspond to the exact same
realizations—each would extrapolate differently outside
the set of events on which it was derived. The inverse
problem is more acute when more theories, more
distributions can fit a set a data —particularly in the
presence of nonlinearities or nonparsimonious
distributions®>.

So this inverse problem is compounded two problems:

+ The small sample properties of rare events as these
will be naturally rare in a past sample. It is also acute in
the presence of nonlinearities as the families of possible
models/parametrization explode in numbers.

+ The survivorship bias effect of high impact rare
events. For negatively skewed distributions (with a
thicker left tail), the problem is worse. Clearly,
catastrophic events will be necessarily absent from the
data —since the survivorship of the variable itself will
depend on such effect. Thus left tailed distributions will
1) overestimate the mean; 2) underestimate the
variance and the risk.

Figure 4 shows how we normally lack data in the tails;
Figure 5 shows the empirical effect.

13 A Gaussian distribution is parsimonious (with only two
parameters to fit). But the problem of adding layers of possible
jumps, each with a different probabilities opens up endless
possibilities of combinations of parameters.
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Figure 4 The Confirmation Bias At Work. The
shaded area shows what tend to be missing
from the observations. For negatively-skewed,
fat-tailed distributions, we do not see much of
negative outcomes for surviving entities AND we
have a small sample in the left tail. This
illustrates why we tend to see a better past for a
certain class of time series than warranted.
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Figure 5 Outliers don‘t Predict Outliers. The
plot shows (in Logarithmic scale) a shortfall in
one given year against the shortfall the following
one, repeated throughout for the 43 variables. A
shortfall here is defined as the sum of deviations
in excess of 7%. Past large deviations do not
appear to predict future large deviations, at
different lags.
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Figure 6 Regular Events Predict Regular
Events. This plot shows, by comparison with
Figure 5, how, for the same variables, mean
deviation in one period predicts the one in the
subsequent period.

Pre-asymptotics. Theories can be extremely
dangerous when they were derived in idealized
situations, the asymptote, but are used outside the
asymptote (its limit, say infinity or the infinitesimal).
Some asymptotic  properties do work  well
preasymptotically (as well see, with type-1
distributions), which is why casinos do well, but others
do not, particularly when it comes to the class of fat-
tailed distributions.

Most statistical education is based on these asymptotic,
laboratory-style Platonic properties—yet we take
economic decisions in the real world that very rarely
resembles the asymptote. Most of what students of
statistics do is assume a structure, typically with a
known probability. Yet the problem we have is not so
much making computations once you know the
probabilities, but finding the true distribution.

V- THE TWO PROBABILISTIC STRUCTURES

There are two classes of probability domains—very
distinct qualitatively and quantitatively —according to
precise mathematical properties. The first, Type-1, we
call “benign” thin-tailed nonscalable, the second, Type
2, “wild” thick tailed scalable, or fractal (the attribution
“wild” comes from Mandelbrot's classification of
Mandelbrot[1963]).

Taleb (2009) shows that one of the mistakes in the
economics literature that “fattens the tails”, with two
main classes of nonparsimonious models and processes
(the jump-diffusion processes of Merton, 1973 or
stochastic volatility models such as Engels’ ARCH™) is
to believe that the second type of distributions are

14 See the general decomposition into diffusion and jump
(non-scalable) in  Merton(1976), Duffie, Pan, and
Singleton(2000); discussion in Baz and Chacko (2004), Haug
(2007).

15 Engle(1982).
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amenable to analyses like the first —except with fatter
tails. In reality, a fact commonly encountered by
practitioners, fat-tailed distributions are very unwieldy —
as we can see in Figure 2. Furthermore we often face a
problem of mistaking one for the other: a process that
is extremely well behaved, but, on the occasion,
delivers a very large deviation, can be easily mistaken
for a thin-tailed one —a problem known as the “problem
of confirmation” (Taleb, 2007). So we need to be
suspicious of the mistake of taking Type-2 for Type-1
as it is more severe (and more readily made) than the
one in the other direction®®.

As we will saw from the data presented, this
classification, “fat tails” does not just mean having a
fourth moment worse than the Gaussian. The Poisson
distribution, or a mixed distribution with a known
Poisson jump, would have tails thicker than the
Gaussian; but this mild form of fat tails can be dealt
with rather easily —the distribution has all its moments
finite. The problem comes from the structure of the
decline in probabilities for larger deviations and the
ease with which the tools at our disposal can be tripped
into producing erroneous results from observations of
data in a finite sample and jumping to wrong decisions.

The scalable property of Type-2 distributions:
Take a random variable x. With scalable distributions,
asymptotically, for x large enough, (i.e. “in the tails”),

P[X > nx]

P[X > x]
property can hold for P[X<n x] for negative values).
This induces statistical self-similarities. Note that owing
to the finiteness of the realizations of random variables,
and lack of samples in the tails we might not be able to
observe such property —yet not be able to rule out.

depends on n, not on x (the same

For economic variables, there is no fundamental reason
for the ratio of “exceedances” (i.e., the cumulative
probability of exceeding a certain threshold) to decline
as both the numerator and the denominators are
multiplied by 2.

This self-similarity at all scales generates power-law, or

Paretian, tails, i.e., above a crossover point, P[X>x]=K
X_“.U 18

16 Makridakis et al(1993), Makridakis and Hibon (2000)
present evidence that more complicated methods of
forecasting do not deliver superior results to simple ones
(already bad). The obvious reason is that the errors in
calibration swell with the complexity of the model.

17 Scalable discussions: introduced in Mandelbrot(1963),
Mandelbrot (1997), Mandelbrot and Taleb (2009).

18 Complexity and power laws: Sornette (2004), Stanley et
al (2000), Amaral et al (1997); for scalability in different
aspects of financial data, Gabaix et al. (2003a,2003b,2003¢),
Gopikrishnan et al. (1998,1999,2000), Plerou et al (2000). For
the statistical mechanics of scale-free networks Barabasi and
Albert (1999), Albert and Barabasi(2000),Albert et Al (2002).
The “sandpile effect” (i.e., avalanches and cascades) is



Let's draw the implications of type-2 distributions:

Finiteness of Moments and Higher Order Effects.
For thick tailed distributions, moments higher than o
are not “finite”, i.e., they cannot be computed. They
can certainly be measured in finite samples —thus giving
the illusion of finiteness. But they typically show a great
degree of instability. For instance distribution with
infinite variance will always provide, in a sample, the
illusion of finiteness of variance.

In other words, while for type-1 errors converge (the
expectations of higher orders of x, say or order n, such
as 1/n! E[x"], where x is the error, do not decline. In
fact they become explosive).

Crude 0il: Annual Kurtosis 1983-2008

Figure 7-Kurtosis over time: example of an
“infinite moment”. The graph shows the fourth
moment for crude oil in annual nonoverlapping
observations between 1982 and 2008. The
instability show in the dependence of the
measurement on the observation window.

2) “Atypicality” of Moves. For thin tailed domains,
the conditional expectation of a random variable X ,
conditional on its exceeding a number K, converge to K
for larger values of K.

lim, ., E[X |, ,]=K

For instance the conditional expectation for a Gaussian
variable (assuming a mean of 0) conditional that the
variable exceeds 0 is approximately .8 standard
deviations. But with K equals 6 standard deviations, the
conditional expectation converges to 6 standard
deviations. The same applies to all the random
variables that do not have a Paretan tail. This induces
some “typicality” of large moves.

For tat tailed variables, such limit does not seem to
hold:

discussed in Bak et al (1987, 1988), Bak (1996), as power laws
arise from conditions of self-organized criticality.
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lim, ., E[X |, ]=Kc

where ¢ is a constant. For instance, the conditional
expectation of a market move, given that it is in excess
of 3 mean deviations, will be around 5 mean deviations.
The expectation of a move conditional on it being
higher than 10 mean deviations will be around 18. This
property is quite crucial.

The atypicality of moves has the following significance.

- One may correctly predict a given event, say,
a war, a market crash, a credit crisis. But the
amplitude of the damage will be unpredicted.
The open-endedness of the outcomes can
cause severe miscalculation of the expected
payoff function. For instance the investment
bank Morgan Stanley predicted a credit crisis
but was severely hurt (and needed to be
rescued) because it did not anticipate the
extent of the damage.

- Methods like Value-at-Risk!® that may
correctly compute, say, a 99% probability of
not losing no more than a given sum, called
“value-at-risk”, will nevertheless miscompute
the conditional expectation should such
threshold be exceeded. For instance one has
99% probability of not exceeding a $1 million
loss, but should such a loss occur, it can be
$10 million or $100 million.

This lack of typicality is of some significance. Stress
testing and scenario generation are based on assuming
a “crisis” scenario and checking robustness to it.
Unfortunately such luxury is not available for fat tails as
“crisis” does not have a typical magnitude.

The following table shows the evidence of lack of
convergence to thin tails —hence lack of “typicality” of
the moves. We stopped for segments for which the
number of observations becomes small —since lack of
observations in the tails can provide the illusion of
“thin” tails.

Table 3- Conditional expectation for moves > K,
43 economic variables

K Mean Move (in MAD) in excess of n
Mean Deviations K
1 2.01443 65958
2 30814 23450
3 4.19842 8355

19 For the definition of Value at Risk, Jorion (2001);
critique: Joe Nocera, “Risk Mismanagement: What led to the
Financial Meltdown”, New York Time Magazine, Jan 2, 2009



4 5.33587 3202
5 6.52524 1360
6 7.74405 660
7 9.10917 340
8 10.3649 192
9 11.6737 120
10 13.8726 84
11 15.3832 65
12 19.3987 47

13 21.0189 36
14 21.7426 29

15 24.1414 21

16 25.1188 18

17 27.8408 13

18 31.2309 11

19 35.6161 7

20 35.9036 6

Table 4 Conditional expectation for moves < K,
43 economic variables

K

Mean Deviations Average Move (in MAD) below K n
-1 -2.06689 62803
2 -3.13423 23258
-3 -4.24303 8676
-4 -5.40792 3346
-5 -6.66288 1415
-6 -7.95766 689
-7 -9.43672 392
-8 -11.0048 226
-9 -13.158 133
-10 -14.6851 95
-11 -17.02 66
-12 -19.5828 46
-13 -21.353 38
-14 -25.0956 27
-15 -25.7004 22
-16 -27.5269 20
-17 -33.6529 16
-18 -35.0807 14
-19 -35.5523 13
-20 -38.7657 11

3) Preasymptotics:

Even if we eventually converge

to a probability distribution, of the kind well known and
tractable, it is central that time to convergence plays a
large role.

For instance, much of the literature invokes the Central
Limit Theorem to assume that fat-tailed distribution
with finite variance converge to a Gaussian under
summation. If daily errors are fat-tailed, cumulative
monthly errors will become Gaussian. In practice, this
does not appear to hold. The data in the appendix
show that economic variables do not remotely converge
to the Gaussian under aggregation.

Furthermore, finiteness of variance is necessary but
highly insufficient a condition. Bouchaud and Potters

© Copyright 2009 by N. N. Taleb.

[2003] showed that the tails remain heavy while the
body of the distribution becomes Gaussian.
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Figure 8- Behavior of Kurtosis under

aggregation: we lengthen the window of
changes from 1 day to 50 days. Even for
variables with infinite fourth moment, the
kurtosis tends to drop under aggregation in
small samples, then rise abruptly after a large
observation.

4) Metrics.

Much of times series work seems to be based on
metrics in the square domain, hence patently
intractable. Define the norm LP:

3

it will increase along with p. The nhumbers can become
explosive, with rare events taking a disproportionately
larger share of the metric at higher orders of p. Thus
variance/standard deviation (p=2), as a measure of
dispersion, will be far more unstable than mean
deviation (p=1). The ratio of mean-deviation to
variance (Taleb, 2009) is highly unstable for economic
variables. Thus modelizations based on variance
become incapacitated. More practically, this means that
for distribution with finite mean (tail exponent greater
than 1), the mean deviation is more “robust

p

120

5) Incidence of Rare Events

20 Note on the weaknesses of nonparametric statistics:
Mean deviation is often used as robust, nonparametric or
distribution-free statistic. It does work better than variance, as
we saw, but does not contain information on rare events by
the argument seen before. Likewise nonparametric statistical
methods (relying on empirical frequency) will be extremely
fragile to the “black swan problem”, since the absence of large
deviations in the past leave us in a near-total opacity about
their occurrence in the future —as we saw in Figure 4, these are
confirmatory. In other words nonparametric statistics, those
that consist in fitting a kernel to empirical frequencies,
assume, even more than other methods, that a large deviation
will have a predecessor.



One common error is to believe that thickening the tails
leads to an increase of the probability of rare events. In
fact, it usually leads to the decrease of incidence of
such events, but the magnitude of the event, should it
happen, will be much larger.

Take, for instance, a normally distributed random
variable. The probability of exceeding 1 standard
deviation is about 16%. Observed returns in the
markets, with a higher kurtosis, present a lower
probability, around 7-10% of exceeding the same
threshold —but the depth of the excursions is greater.

6) Calibration Errors and Fat Tails

One does not need to accept power laws to use them.
A convincing argument is that if we don't know what a
"typical" event is, fractal power laws are the most
effective way to discuss the extremes mathematically.
It does not mean that the real world generator is
actually a power law—it means that we don't
understand the structure of the external events it
delivers and need a tool of analysis so you do not
become a turkey. Also, fractals simplify the
mathematical discussions because all you need is
perturbate one parameter, here the «, and it increases
or decreases the role of the rare event in the total
properties.

Say, for instance, that, in an analysis, you move o from
2.3 to 2 for data in the publishing business; the sales of
books in excess of 1 million copies would triple! This
method is akin to generating combinations of scenarios
with series of probabilities and series of payoffs,
fattening the tail at each time.

The following argument will help illustrate the general
problem with forecasting under fat tails. Now the
problem: Parametrizing a power law lends itself to
extremely large estimation errors (since heavy tails
have inverse problems). Small changes in the o main
parameter used by power laws leads to extremely large
effects in the tails. Monstrous.

And we don't observe the a --an uncertainty that
comes from the measurement error. Figure 9 shows
more than 40 thousand computations of the tail
exponent o from different samples of different
economic variables (data for which it is impossible to
refute fractal power laws). We clearly have problems
figuring it what the a is: our results are marred with
errors. The mean absolute error in the measurement of
the tail exponent is in excess of 1 (i.e. between a=2
and a=3). Numerous papers in econophysics found an
"average" alpha between 2 and 3—but if you process
the >20 million pieces of data analyzed in the literature,

© Copyright 2009 by N. N. Taleb.
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you find that the variations between single variables are
extremely significant?!.

n= 40,431

800

600

400

200

1 2 3 4 5 6

Figure 9 Estimation error in a from 40 thousand
economic variables.

Now this mean error has massive consequences. Figure
10 shows the effect: the expected value of your losses
in excess of a certain amount (called "shortfall") is
multiplied by >10 from a small change in the o that is
less than its mean error?.

Alpha and remote events

25
20
15

10

1.5 2 2.5 3 3.5

Figure 10 The value of the expected shortfall
(expected losses in excess of a certain
threshold) in response to changes in tail
exponent a. We can see it explode by an order
of magnitude.

21 One aspect of this inverse problem is even pervasive in
Monte Carlo experiments (much better behaved than the real
world), see Weron (2001).

22 Note that the literature on extreme value theory
(Embrecht et al. , 1997) does not solve much of the problem as
the calibration errors stay the same. The argument about
calibration we saw earlier makes the values depend on the
unknowable tail exponent. This calibration problem explains
how Extreme Value Theory works better on computers than in
the real world (and has failed completely in the economic crisis
of 2008-2009).



V- THE MAP

First Quadrant: Simple binary decisions, under type-1
distributions: forecasting is safe. These situations are,
unfortunately, more common in laboratories and games
than real life. We rarely observe these in payoffs in
economic decision making. Examples: some medical
decisions, casino bets, prediction markets.

Second Quadrant: Complex decisions under type-1
distributions: ~ Statistical methods may  work
satisfactorily, though there are some risks. True, thin-
tails may not be a panacea owing to preasymptotics,
lack of independence, and model error. There, clearly,
are problems there, but these have been addressed
extensively in the literature (see Freedman, 2007).

Third Quadrant: Simple decisions, under type-2
distributions: there is little harm in being wrong -the
tails do not impact the payoffs.

Fourth Quadrant: Complex decisions under type-2
distributions: that is where the problem resides. We
need to avoid prediction of remote payoffs—though not
necessarily ordinary ones. Payoffs from remote parts of
the distribution are more difficult to predict than closer
parts.

A general principle is that, while in the first three
quadrants you can use the best model you can find,
this is dangerous in the fourth quadrant: no model
should be better than just any model. So the idea is to
exit the fourth quadrant.

The recommendation is to move into the third quadrant
—it is not possible to change the distribution; it is
possible to change the payoff , as will be discussed in
the next section.

Table 5 The Four Quadrants.

Simple payoffs|Complex payoffs|

Distribution 1 First
(“thin tailed”) Quadrant Second
Quadrant:
Extremely
Safe
Safe

© Copyright 2009 by N. N. Taleb.
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Distribution 2 Third Fourth
(no or unknown Quadrant: Quadrant:
characteristic Safe Dangers™
scale)

23 The dangers are limited to exposures in the negative
domain (i.e., adverse payoffs). Some exposures, we will see,
can be only “positive”.




The subtlety is that, while we have a poor idea about
the expectation in the 4™ quadrant, exposures to rare
events are not symmetric.

VI- DECISION-MAKING AND FORECASTING IN THE FOURTH
QUADRANT

1- Solutions by changing the payoff:

Finally, the main idea proposed in this paper is to
endogenize decisions, i.e., escape the 4™ quadrant
whenever possible by changing the payoff in reaction to
the high degree of unpredictability and the harm it
causes. How?

Just consider that the property of “atypicality” of the
moves can be compensated by truncating the payoffs,
thus creating an organic “worst case” scenario that is
resistant to forecast errors. Recall that a binary payoff
is insensitive to fat tails precisely because above a
certain level, the domain of integration, changes in
probabilities do not impact the payoff. So making the
payoff no longer open-ended mitigates the problems,
thus making it more tractable mathematically.

A way to express it using moments: all moments of the
distribution become finite in the absence of open-ended
payoffs —by putting a floor L below which f(x) =0, as
well a ceiling H. Just consider that if you are
integrating payoffs in a finite, not open-ended domain,
i.e. between L and H, respectively, the tails of the
distributions outside that domain no longer matter.
Thus the domain of integration becomes the domain of
payoff.

Ax) = [ F(x) plx) dx

With an investment portfolio, for instance, it is possible
to “put a floor” on the payoff using insurance, or, better
even, by changing the allocation. Insurance products
are tailored with a maximum payoff; catastrophe
insurance products are also set with a “cap”, though
the cap might be high enough to allow for a
dependence on the error of the distribution®.

The Effect of Skewness: We omitted earlier to
discuss asymmetry in either the payoff or in the
distribution. Clearly the Fourth Quadrant can present
left or right skewness. If we suspect right-skewness,
the true mean is more likely to be underestimated by
measurement of past realizations, and the total
potential is likewise poorly gauged. A biotech company

24 Insurance companies might cap the payoff of a single
claim, but a collection of capped claims might represent some
problems as the maximum loss becomes too large as to be
almost undistinguishable from that with an uncapped payoff.
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(usually) faces positive uncertainty, a bank faces almost
exclusively negative shocks.

More significantly, by raising the L (the lower bound),
one can easily produce positive skewness, with a set
floor for potential adverse outcomes and open upside.
For instance what Taleb calls a “barbell” investment
strategy consists in allocating a high portion of a
portfolio to T-Bills (or equivalent), say a, with 0<a<1,
and a small portion (1-a) to high-variance securities.
While the total portfolio has medium variance, L= (1-
a) times the face value invested while another portfolio
of the same variance might lose 100%.

Convex and Concave to Error: More generally, we
can consider concave to model error if the payoff from
the error (obtained by changing the tails of the
distribution) has a negative second derivative with
respect to that change in the tails, or is negatively
skewed (like the payoff of a short option). It will be
convex if the payoff is positively skewed, (like the
payoff of a long option).

The Effect of Leverage
Investment

in Operations and

Leveraging in finance has the effect of increasing
concavity to model error. As we will see, it is exactly
the opposite of redundancy —it causes payoffs to
increase, but at the costs of an absorbing barrier should
there be an extreme event that exceeds the allowance
made in the risk measurement. Redundancy, on the
other hand, is the equivalent of de-leveraging, i.e. by
having more idle “inefficient” capital on the side. But a
a second look at such funds can reveal that there may
be a direct expected value from being able to benefit
from opportunities in the event of asset deflation —
hence “idle” capital needs to be analyzed as an option.

2- Solutions by mitigating forecasting
errors

Optimization v/s Redundancy. The optimization
paradigm of the economics literature meets some
problems in the fourth quadrant: what if we have a
consequential forecasting error? Aside from the issue
that the economic agent is optimizing on the future
states of the world, with a given probability distribution,
nowhere® have the equations taken into account the
possibility of a large deviation that would allow not
optimizing consumption and having idle capital. Also,
the psychological literature on well-being (Kahneman,
1999) shows an extremely concave utility function of
income —if one spends such income. But if one hides it
under the mattress, he will be less vulnerable to an

25 Merton 1992, for a discussion of the general
consumption Capital Asset Pricing Market.



extreme event. So there is an enhanced survival
probability for those who have additional margin.

While economics have been mired in conventional linear
analysis, stochastic optimization with Bellman-style
equations that fall into the category Type-1, some
intuitions of the point are provided by complex systems.
One of the central attributes of complex systems is
redundancy (May et al, 2008).

Biological systems—those that survived millions of
years—include a large share of redundancies®® %’. Just
consider the number of double organs (lungs, kidneys,
ears). This may suggest an option-theoretic analysis:
redundancy is like an option. One certainly pay for it,
but it may be necessary for survival. And while
redundancy means similar functions used by identical
organs or resources, biological systems have, in
addition, recourse to “degeneracy”, the possibility of
one organ to perform more than one function, which is
the analog of redundancy at a functional level (Edelman
and Gally, 2001).

When institutions such as banks optimize, they often do
not realizing that a simple model error can blow
through their capital (as it just did).

Type-1 Hoise

26 May et al. (2008)

27 For the scalability of biological systems, see Burlando
(1993), Harte et al. (1999), Solé et al (1999), Ritchie et al
(1999), Enquist and Niklas (2001).
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Type-2 Hoise

Figure 11- Comparison between Gaussian-style
noise and Type-2 noise with extreme spikes —
which necessitates more redundancy (or
insurance) than required. Policymakers and
forecasters were not aware that complex
systems tend to produce the second type of
noise.

Examples: In one day in August 2007, Goldman Sachs
experienced 24 time the average daily transaction
volume?®—would 29 times have blown up the clearing
system? Another severe instance of an extreme
“spike” lies in an event of September 18, 2008, in the
aftermath of the Lehman Bothers Bankruptcy.
According to congress documents, only made public in
February 2009.

On Thursday (Sept 18), at 1lam the Federal
Reserve noticed a tremendous draw-down of
money market accounts in the U.S., to the tune of
$550 billion was being drawn out in the matter of an
hour or two.

If they had not done that[ add liquidity], their
estimation is that by 2pm that afternoon, $5.5
trillion would have been drawn out of the money
market system of the U.S., would have collapsed
the entire economy of the U.S., and within 24 hours
the world economy would have collapsed. It would
have been the end of our economic system and our
political system as we know i,

For naive economics, the best way to effectively reduce
costs is to minimize redundancy, hence avoiding the
option premium of insurance. Indeed some systems
tend to optimize—therefore become more fragile.
Barabasi and Albert (1999), Albert and Barabasi (2002)
warned (ahead of the North Eastern power outage of
August 2003) how electricity grids for example optimize
to the point of not coping with unexpected surges —
which predicted the possibility of a blackout of the
magnitude of the one that took place in the North
Eastern U.S. in August 2003. We cannot discuss "flat

28 Personal communication, Pentagon Highland Forum,
April meeting, 2008.
29 http://www.liveleak.com/view?i=ca2_1234032281



earth" globalization without realizing that it is
overoptimized to the point of maximal vulnerability.

2-bTime. 1t takes much, much longer for a fat-tailed
time series to reveal its properties —in fact many can in
short episodes masquerade as thin-tailed. At the worst,
we don't know how long it would take to know. But we
can have a pretty clear idea if organically, because of
the nature of the payoff, the "Black Swan" can hit on
the left (losses) or on the right (profits). The point can
be used in climatic analysis. Things that have worked
for a long time are preferable—they are more likely to
have reached their ergodic states.

2-c The Problem of Moral Hazard. Is optimal to
make series of annual bonuses betting on hidden risks
in the Fourth Quadrant, then “blow up” (Taleb, 2004).
The problem is that bonus payments are made with a
higher frequency (i.e. annual) than warranted from the
statistical properties (when it takes longer to capture
the statistical properties).

2-d Metrics. Conventional metrics based on type 1
randomness fail to produce reliable results —while the
economics literature is grounded in them. Concepts like
"standard deviation" are not stable and do not measure
anything in the Fourth Quadrant. So does "linear
regression" (the errors are in the fourth quadrant),
"Sharpe ratio", Markowitz optimal portfolio®®, ANOVA,
Least square, etc. "Variance"/"standard deviation" are
terms invented years ago when we had no computers.
Note that from the data shown and the instability of the
kurtosis, no sample will ever deliver the true variance in
reasonable time. Yet, note that truncating payoffs
blunt the effects of the inadequacy of the metrics.

VI- CONCLUSION

To conclude, we offered a method of robustifying
payoffs from large deviations and making forecasts
possible to perform. The extensions can be generalized
to larger notion of society’s safety — for instance how
we should build systems (internet, banking structure,
etc.) impervious to random effects.

30 The framework of Markowitz (1952) as it is built on L2
norm, does not stand any form of empirical or even theoretical
validity, owing to the dominance higher moment effects, even
in the presence of “finite” variance, see Taleb (2009).
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