
Extreme Point Models in Statistics [with Discussion and Reply] 

Author(s): Steffen L. Lauritzen, Ole E. Barndorff-Nielsen, A. P. Dawid, Persi Diaconis 
and Søren Johansen  

Source: Scandinavian Journal of Statistics , 1984, Vol. 11, No. 2 (1984), pp. 65-91  

Published by: Wiley on behalf of Board of the Foundation of the Scandinavian Journal 
of Statistics  

Stable URL: http://www.jstor.com/stable/4615945

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide 
range of content in a trusted digital archive. We use information technology and tools to increase productivity and 
facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. 
 
Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at 
https://about.jstor.org/terms

and Wiley  are collaborating with JSTOR to digitize, preserve and extend access to Scandinavian 
Journal of Statistics

This content downloaded from 
�������������192.80.65.116 on Tue, 25 Aug 2020 20:18:24 UTC������������� 

All use subject to https://about.jstor.org/terms

http://www.jstor.com/stable/4615945


 Scand J Statist 11: 65-91, 1984

 Extreme Point Models in Statistics

 STEFFEN L. LAURITZEN

 Aalborg University Centre

 ABSTRACT. We give a survey of the general theory of extreme point models in statistics, i.e.

 statistical models that are given as the extreme points of the convex set of probability
 measures satisfying (in a general sense) a symmetry condition. Special emphasis is payed to

 examples, some of which are only partially solved, some are classical and some are recent.

 Key words: exchangeability, de Finetti's theorem, Rasch models, repetitive structures,
 sufficiency

 0. Introduction and summary

 The present paper surveys the general theory of extreme point models as developed in

 Lauritzen (1982), (in the following denoted [EF]) with special emphasis on examples. The

 proofs of almost all results are omitted from this presentation and appropriate references

 are given instead.

 It is our aim to point out that a number of statistical models have the common structure

 that they are given as the extreme points of a certain convex set of probability measures,

 given by symmetry properties (in a general sense). We show that such models have

 various desirable properties.

 We thereby want to emphasize that the relation between a statistical analysis and a

 statistical model is a kind of duality, in the sense that the model can be "generated" by the

 analysis and vice versa, reflecting the perception that the model is a particular "represen-

 tation" of the analysis.

 The probably best known example is the Bernoulli model for repeated tosses of a coin

 corresponding to de Finetti's (1931) theorem:

 Let Xi, ... X,, ... be a sequence of random variables taking values in (0, I} and suppose
 their joint distribution is exchangeable, i.e. that

 (X1, * * * Xn)-(X,(l) *n))

 for all n EN and all permutations 7r E S(n), the symmetric group of order n. Here X- Y

 means that X and Y have the same distribution.

 Then there is a unique probability measure u on [0, 1] such that for all n EN,

 P{Xl =XI, ...,Xn = xnl} = 1=1 i(I-0)i= (0.1)

 Moreover, the limit

 Xx-= lim XI+...+Xn
 n-.o f n

 exists almost surely and,u is the distribution of Xx. We can twist this result slightly by

 realising that

 (XJ,*,Xn)-(X;r(1),..,X,(n)) V,ES(n)

 5- 848192
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 66 S. L. Lauritzen Scand J Statist 11

 if and only if for all t E { , n}

 P{XI =xI, .--,X, = xn|XI+...+Xn =t } n }((xi+...+xn), (0.2)

 and thereby noticing that the class of exchangeable probability measures on {0, 1}N is the

 largest class of probabilities for which

 tn: {0, I In__ { ,I .. , * n I

 tn(X I *9 ..9Xn) = XI +X2+ +Xn

 for each n is sufficient with (0.2) as conditional distributions given tn(Xl, . .,Xn)=t.
 Further, this class is a convex set, with the independent Bernoulli measures Po{ . } as

 extreme points. We have a unique integral representation as

 P{ }= J Pa{ - I} (dO)

 where

 P{XI =X I...Xn = Xn} = 6 =x(l _#)nf=ix

 so that, according to Pe, XI, X2, ... are just independent Bernoulli trials with probability of
 "'success" equal to 0.

 Moreover, because the measure,u is "the limiting distribution of the sufficient statistic",

 the probability P can be identitied from complete observation of the entire sequence

 (XI,X2, ...) if and only if P is an extreme point itself. In fact, observing a single realization
 of the process X1 ,X2 ... gives rise to just one value of XO. This value identifies the mixing

 measure ,u if and only if u is degenerate.

 The fact that the independent Bernoulli measures are the extreme points of the convex

 set of measures, for which xI+ .. . +xn for all n is sufficient and (0.2) are the corresponding
 conditional distributions, will in the sequel be expressed as "the model of independent

 identical Bernoulli trials is an extreme point model".

 We shall see that such extreme point models in fact occur quite commonly in statistics

 and that results like the above integral representation and interpretation of the represent-

 ing measure as the limiting distribution of the sufficient statistic, are of a quite general

 nature.

 Generalizations of de Finetti's theorem can be made in several directions. One is to

 exchange the spaces {0, 1 } with more general measure spaces, as done by Hewitt &

 Savage (1955).

 Another is to consider invariance of distributions under the action of other groups than

 the permutation group like e.g. the group of rotations of Rn where the random variables

 Xl,...,Xn all take values in R, cf. e.g. Kingman (1972).

 Yet another method is to specify other sufficient statistics than xl +... +x,.
 All these generalizations are special cases of the same theory, to be surveyed in the

 following.

 Section 1, 2 and 3 are devoted to a survey of the general results, 4 to a discussion of the

 relation between the theory and inference problems, whereas the remaining sections are

 devoted to examples.
 The theory is intimately related to considerations in statistical mechanics, see e.g.
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 Scand J Statist 11 Extreme point models in statistics 67

 Preston (1979), although slightly different in technique and very different in scope, since

 the "purpose" of statistical mechanical models is to explain observable macroscopic
 behaviour from microscopic properties, whereas statistical models are used to infer about

 macroscopic behaviour from observable microscopic phenomena.

 A genuine survey of the connection of this line of research to other area's would itself be

 interesting but is outside the scope of the present paper.

 A survey paper which has some slight overlap with the present but mostly deals with

 different aspects and examples is given by Diaconis & Freedman (1982).

 1. Preliminaries. Markov kernels

 Throughout the paper sample spaces will be assumed Polish, i.e. topological spaces that

 are metrizable, complete and separable. All maps are considered continuous and all

 probability measures regular Borel measures. If X is a Polish space, -3(T) denotes the or-

 algebra of Borel sets of X and P(f) the (Polish) space of probability measures on (QT, @(t))
 endowed with the weak topology, i.e.

 Pa >P JfdPa * ffdP

 for all continuous and bounded real-valued functions on X.

 A Markov kernel [I from X to ON is a function

 such that

 (i) Vx E X.- n(x, )E P(03)
 (ii) the map x-Jl(x, ) is continuous.

 If fll is a Markov kernel from X to 0/ and 112 is a Markov kernel from ON to Y the
 composition

 [I = I12 I2

 is the Markov kernel from X to 9 given as

 fl(x, C) =f I12(Y, C)11 (x, dy).

 A Markov kernel rI from ' to O/ induces a continuous map from P(,C) to P(ON) by

 (I7u) (B) = fI(x, B )y(dx)

 and the composition above -1=112 III is just the composition of the corresponding maps.

 If t: V--9O is a continuous map, it induces a Markov kernel rIt as

 rlt(x, B) = lB(t(X)).

 We shall instead of fl, just write t and we do thus not distinguish between a map and the
 Markov kernel induced by it. The application of the Markov kernel induced by t to a
 probability , E P(X) gives the lifted measure ,u t-':
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 68 S. L. Lauritzen Scand J Statist 11

 (t) (B) = (f l,tu ) (B) = f 1(x, B)M(dx) = f lB(t(x))I(dx) =,(t-l(B)).

 If,u is a probability on Xand t: X-39I is a map, a Markov kernel Q from I/ to X is a regular

 conditional probability given t if

 (i) QtU=u

 (ii) tQ=Iy

 where the first condition in more conventional terms says

 u(B)=f Q(,YB) t-'(dy),VyE IN.

 2. Repetitive structures. Sufficiency

 The basis for our further investigations is the notion of a repetitive structure, introduced in

 the discrete setting by P. Martin-Lof (1974). A repetitive structure is a projective system of
 continuous maps and Polish spaces. More precisely it is given by:

 (1) A partially ordered (<) set I which is directed to the right, i.e.

 Vi,JEI3SkEL i<k, j<k.

 (2) A family (Oi, iE I) of Polish spaces.
 (3) A family (Pij)i<j of continuous surjective maps

 p11: XTj S i

 Satisfying for i <j < k:

 PijPjk = Pik-

 These maps are called projections.

 We think of I as describing a family of experiments with corresponding sample spaces Xi

 and pij define the relation between these, i.e. in which sense i is a "subexperiment" of j.
 For technical reasons we assume throughout that I has a cofinal sequence, i.e. there is a

 sequence (in)nENNCI such that

 ViEI3n eN: i<in-

 The typical example of a repetitive structure has I as a subset of the set of subsets of a
 countable set T, ordered by inclusion, and if A E I, then

 'VA- X 'Tt
 tEA

 and the projections, pAB are just coordinate projections, i.e. for AcB:

 pAB(xt, t EB) =(xt, t EA).

 Associated with such a projective system we have the projective limit

 T= lim Xi = {(xi, i E I)|Vi <ji: pxj) = Xi}
 ipl
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 Scand J Statist II Extreme point models in statistics 69

 which is Polish (when I has a cofinal sequence) when equipped with the topology of

 pointwise convergence. In the standard example of a repetitive structure, X can be

 identified with the product X,ETZtf.
 We have the canonical projections

 pj: X-3 tj given as pJ(xi, i E ) = xj

 and these satisfy PijPj = pi for i<j.
 Since later X shall be equipped with families of probability measures, we introduce the

 "random variables" taking values in Xi

 Xi(x) = pi(x), where now p1J(X) = Xi.

 The version of Kolmogorov's consistency theorem given in Bourbaki (1969), ensures a

 one-to-one correspondence between a probability measure ,u on X and a consistent family

 (ui,iEl) where ,uiEP(Vi) and piyMj=,ui,i<j. We shall thus write u=(ui,,iEI) without
 ambiguity. ,ui can be interpreted as the distribution of Xi induced by ,u.

 If {yu(6), a e 0) is a parametrized family of probability measures on X we shall say that a
 system of continuous surjective maps

 ti: Xi -- 3i, i E I

 is sufficient if there exist Markov kernels

 Qi

 o/i __+-i

 such that the following conditions are satisfied

 (i) Qi ti Xli(0) =,ui(O) VO E E3, V i E I

 (ii) tj Qj= Ii ViEI (2.1)

 (iii) Qi tj Pej Qi = Pij Qj Vi <j S

 Letting Yi=ti(Xi), (i) and (ii) together ensure that for A E y(Qi), YE 9i

 Qi(Aly) =u(6) {XiEAI Yi = Y},

 i.e. that ti is sufficient in the usual sense, and (iii) ensures that Xi and Yj are conditionally
 independent given Yi, i.e. that ti is transitive in the sense of Bahadur (1954), or more

 precisely, that for BE Oh(ONj)

 Q{A ly) =,u(6) {Xi E A I Yi = Y, Yj E B}.

 For details on this, see [EF].

 It follows ([EF], p. 205) that for any increasing sequence il<i2<... <in<.... the process
 made up by the corresponding values of the sufficient statistics

 yil, Yi2.. y in

 is a Markov process.

 Of special interest to us is the tail-a-algebra

 i,e- n or(Yj,j>i)
 iEI

This content downloaded from 
�������������192.80.65.116 on Tue, 25 Aug 2020 20:18:24 UTC������������� 

All use subject to https://about.jstor.org/terms



 70 S. L. Lauritzen Scand J Statist 11

 and also the extended tail u-algebra

 ,4(O) =-{AE gA(,T)IViEI: ,u(6){AjXj=x } -,u4){AI Yi = ti(x)} },

 s,,(8g) is the a-algebra of events that are conditionally independent of Xi given Yi for all
 iEI. The transitivity of the sequence of statistics ensures that we have

 FU(O) A.

 3. Maximal and extremal families. Basic limit theorems

 Suppose now that we have given a repetitive structure, a family of continuous surjective

 maps ti: Ti- 9Oi, i EI and a family Qi, i EI of Markov kernels from 9i to Xi such that (ii)
 and (iii) of (2.1) are satisfied. We could then ask for the family of all probability measures

 ,uE P(X) such that also (i) is satisfied, i.e. such that

 Qi tiui = ,Ui, Vi E I.

 We denote this family by Xt and call it the maximal family corresponding to (ti)iE, and
 (Qi)iE. Xt is maximal with the property that (ti)ieI is a sufficient system and Qi are the
 conditional distributions given t1{Xj), in other words, (ti) will be sufficient for any family of
 the type

 {y(O), 0 E E)

 X is a convex set and we shall by 9 denote the extreme points of X, i.e.

 ,U E W C U I + ( 1-)MU2 A/ E ]O, I [ =>M,u =Mu M=2],

 where of course both u,,ul and M2 are elements of X. F is called the extremal family
 corresponding to (ti)iEI, (Q1)j and the repetitive structure. A model of the type having

 E)= 9, u,0) = i, iE I

 is called a canonical model or an extreme point model.

 We have the following results ([EF] Prop. IV, 1.1).

 3.1. Proposition. W and X are Polish. X is a simplex in the sense that for all uE Et there is

 exactly one P. E P(W) such that

 Mu(A) = fe(A)P,(de), VA E @(t).

 Further, if we for any uE Et, any fixed cofinal and increasing sequence

 i=(il<i2<...<i< ...) and any fixed iEI, A E A(,T) define the sequence of random varia-
 bles

 '(A) = Qj(p-'(A)I Yi)
 we hi(E . , p20)

 we =j have (E] Ap I5vn9, p. 20)
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 Scand J Statist 11 Extreme point models in statistics 71

 3.2. Proposition. Z4(A) is a bounded reverse martingale w.r.t. the u-algebras o(Yi, m 3n).

 Further we have

 E, Z4(A) =/u(A)

 n(A) Z. (A) =u{AI t}.

 The extreme points are characterized by the following main theorem ([EF], p. 209):

 3.3. Proposition. For ,E Et the following are equivalent:

 (i) HE W
 (ii) sit is u-trivial (A Es4 =X,u(A) E {0, 1})
 (iii) si, is u-trivial
 (iv) Zc,(A)=u(A) a.s. ,.

 And as corollaries we have

 3.4. Corollary. P, in Proposition 3.1. defines the distribution of Z.(-) in the sense that for
 all B E @(W)

 u{Z.()EB} =P,.(B)

 To see this, realise that because everything is countably generated, (iv) can be extended to

 hold for all A E 04(,t) simultaneously and

 ,u{Z,(.)EB}= e(Z.( )EB)P,,(de)= lB(e)P,(de)=PM(B). O

 3.5. Corollary. P,{Z.( ) EW = 1, which is obtained by letting B= F in Corollary 3.4. O

 Interpreting these results we can think of Z'4(A) as a canonical estimate of u(A) and
 Proposition 3.3 (iv) tells us that if ,u E this estimate is strongly consistent, i.e.

 un(A) = Z4(A) -* Z(A) =,u(A) a. s. u.

 and further that this even characterizes the measures in F among those in X.

 In other words, the parameter in an extreme point model is always consistently estima-

 ble, and is defined in terms of the observations (O=Z4).
 In specific examples it is in general very difficult to identify F in a reasonably explicit

 way. We shall in the following give various examples where this has been done at least in

 part.

 4. Implications for statistical inference

 The theory of extreme point models per se has no direct relation to statistical inference as

 it is usually discussed, since it concerns an analysis of the model rather than the inference

 procedures themselves, the model being regarded as fixed. We believe that our consider-

 ations do have consequences for statistical practice, where after all the establishing of the

 model is an important part of the inference procedure. Many conditioning arguments used

 in statistical inference can actually be seen as modifications of the model rather than the
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 72 S. L. Lauritzen Scand J Statist 11

 inference procedures. We hope to throw more light on this when discussing the examples.

 The results briefly surveyed in the previous two sections play a reasonably prominent role

 in the modem Bayesian approach to statistics, cf. de Finetti (1975). See also the discussion

 of intersubjectivistic parameters in Dawid (1979).

 Consider a given repetitive structure. A Bayesian would to this associate a personal,

 subjective probability Ito E P(f), describing her uncertainty about all possible outcomes of
 the various experiments. She might also specify a system of statistics ti: XiW-*0/i that are
 interesting for predictive or other purposes. Markov kernels Qi can then be calculated as

 Q(A I Y) = uO{Xi E A I Yi = y1}

 and these will automatically satisfy

 Qi ti Ho =/O, ti Qi = IMj..

 If the system of statistics is reasonably well behaved, we would also have the transitivity

 condition satisfied:

 Qi tiPij Qj = Pij Qj-

 Because of these relations uo will now automatically satisfy ,uoE 1, where ft is the

 maximal family corresponding to (td)iE,h (Qi)iE
 The parameter can now be defined as the random variable

 0 = Zo

 which takes values in E= W.

 The prior distribution of 0 is simply given as

 uo{OEB } =PYO(B)

 where P,O is the measure defining the integral representation of uo as

 Hoe = e( )P,4(de).

 The inference on the unknown, random parameter 0 is now performed by computing the

 posterior distribution of 0 given the observations, i.e.

 yo{0 EBIXi = X} =Muo{0 EBI Yi = t,{x)}

 If we denote these posterior distributions by Pxi( ), these become random variables taking

 values in P(O)=P(W) and we can show that the Bayesian posteriors converge almost surely

 (w.r.t. the subjective uo) to the "true" value, i.e. the measure degenerate at 0:

 4.1. Proposition. For all B E @(W)=@=(e) and all cofinal increasing sequences (in)n EeN

 Px. (B) --->IB(O) a.s. ,uO.

 Proof. Let Z= lB(O). Z is bounded and O@(Qt) measurable and further

 Z.= E,,-(Z Xi) = Px, (B).
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 Scand J Statist 11 Extreme point models in statistics 73

 The family of a-algebras u(Xi ) is increasing and g()=limflE N t u(X ). Thus Zn=Px (B) is

 a martingale and

 Znl-Z=lB(6) a.s. uo.

 Note that the main reason for this result to be true is that 0 actually is a function of the

 observations, a fact that we find a central part of the theory.

 Another way of looking at the theory is given as follows. Suppose we have a given

 model for the repetitive structure, a model that might have emerged from probabilistic and

 other mathematical considerations that are external to the repetitive structure itself. Then

 we could find a system of (t)iE, such that this is sufficient and transitive. Ways of finding
 such a system is indicated in ch. 11.2 of [EF]. This gives then automatically the kernels

 (Qi)iE, defined by the conditional distributions of Xi given ti and we can (in principle) find

 ' and X. If our first family {,u(o), 0 E e} is identical to W, we know that the model is
 canonical. If not, we might expect difficulties and might want to modify the model or

 rather change the model to the canonical. It is worth noting that observations could never

 contradict the canonical model if it did not contradict the first one, since it is in principle

 impossible to distinguish whether or not Z. is random, even asymptotically, from only
 one observation from the projective limit.

 Finally we might along the lines of Martin-Lof (1974), use the procedure as a tool for

 model building, by specifying the statistics ti as a family of interesting data reductions and
 the conditional distributions from elementary symmetry considerations. The construction

 of the extreme point (canonical) model can then be performed and we obtain a statistical

 model which is consistent with the symmetry considerations and where the parameter in a

 natural way is defined as the limit of the interesting statistics in an infinitely large

 experiment.

 In the discrete case the use of uniform distributions for the conditional distribution of

 the observations given the statistic can also be justified by a maximum entropy argument

 rather than symmetry, an approach which is often used in statistical mechanics.

 It is tempting to think of the probabilities defining the conditional distributions of the

 observations given the value of the statistics as descriptive in the sense that a statistician

 chooses to describe a data set x by the reduction of x to the value t(x) and Q(* It(x)). In this
 sense the extreme point model is the canonical reduction or description of the infinitely

 large experiment or "population". This line of thinking was implicitely contained in the

 excellent notes of Martin-Lof (1970).

 Finally, we might in the situation, where we have only one sample space X, find it useful

 to embed X into a repetitive structure and use this for constructing models or analysing a

 given model.

 The main problem is that the actual identification of W is hard in any concrete case.

 However the number of cases, where W is known in a reasonably explicit way is gradually

 growing and various hints to solve similar problems can be taken from these examples,

 some of which are described in detail in [EF].

 5. Exponential families

 The most well-known class of extreme point models are given by the exponential families

 corresponding to the simplest possible repetitive structure (independent identical repeti-

 tions). In the discrete case this looks as follows. The partially ordered set I is the set of

 integer intervals { 1, ..., n}, n EN. The sample spaces are given as
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 74 S. L. Lauritzen Scand J Statist 11

 {1L, .,n}- I ..XX

 where Xi= is a fixed discrete, at most countable set. We shall use the notation Xn for
 {,,n} The projections are coordinate projections and the projective limit can be

 identified with the infinite product space

 X = X X ... X tn X ....

 If t: T-*PS is a fixed function into an Abelian semigroup (S, (3), a canonical model is given

 as
 n

 p(Xl, ...,xn|0)= (a(xi)0(0)'O(t(xi)), OED (5.1)

 where a: T-*]O, oo[ is a fixed function and D is a subset of EXP(S), the exponential
 functions on (S, 3), i.e. those non-negative real-valued functions f satisfying

 f(s (D t) = f(s) f(t) Vs, t E S (5.2)

 and

 D= {0 E EXP (S)k (0)= a (x) 0(t(x)) < oo}
 x E X

 In other words, according to p( 10), the coordinate random variables are independent and
 identically distributed with distributions

 p(xl 0) = a(x) (0)-'0(t(x)).

 Combining (5.1) and (5.2) we get

 p(X * ... * nl6)= (17 a(xi))(O) n(t(X)(8... (9 n%

 so that clearly

 tn(XI, 9 ..Xn) = t(XI 3 *-- (D O(n)

 is sufficient. That these models in fact are extreme point models is shown in [EF] Ch. III,
 see also Lauritzen (1975).

 In the special case where (S, (3)c(Nd, +) we get the usual exponential families, ex-
 tended as in Barndorff-Nielsen (1973, 1978), as also shown by Martin-Lof (1974).

 The generalized exponential families described above have not necessarily "finite-
 dimensional statistics", i.e. (S, 3) is not necessarily finitely generated, and also the

 support of p( I0) vary with 0.
 Examples include the family of arbitrary distributions on a fixed set ' corresponding to

 S being the set of positive integer valued measures on X with finite support, a(x)= 1 and t
 being

 t(x) = ?x

 where Ex is the measure degenerate at x. Then

 tn(X e .e.p. ixn) = Exd +i +Exn
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 Scand J Statist 11 Extreme point models in statistics 75

 Also the family of uniform distributions on {1, ..., 0}, 0EN is exponential in the above
 sense with S=(N, V), where

 mVn=max{m,n},

 t(x)=x and a(x)= 1. It is interesting to note that the estimation theory for these generalized

 exponential families is at least as elegant as for the usual exponential families, see [EF] Ch.

 III, where also further examples are discussed.

 As discussed in e.g. Jaynes (1957), usual exponential families can be justified from

 maximum entropy considerations. This is also true for the generalized exponential families
 as we shall now show in the finite case.

 Let X be discrete and finite and consider the exponential family

 po(x) = 0(t(x))Iq(0), 0 E EXP (S)

 where t: T-3(S, E)) is a given statistic.
 Proposition 111.4.5 and III.4.8 of [EF] ensures the existence and uniqueness of a 0 ED

 such that for a given value t(xo)=to

 log O(to)-log q(to) =E O lOg (t(X)) V7 E DF (5.3)

 where DF is a specified subset of EXP(S), see [EF] for details. If we assume Fto=S

 (which is equivalent to 0(x)>O VsES),DF is the set of strictly positive exponential

 functions, and we get by considering i7o=1 and a simple manipulation that (5.3) is
 equivalent to

 logt7(tO) =Ed1ogi(t(X)) Vi7E DFIO' (5.4)

 Let now P,O be the set of probability measures on X such that the equation analogous to

 (5.4) is satisfied, i.e.

 ,uE Ptos1og,9(to) = >u(x) logt7(t(x)) Vq E DF,O. (5.5)
 xE X

 Then clearlyp , is in P,O and we shall show that p, has maximal entropy among the meas-

 ures in P,O, where the entropy is defined as

 En(u) = E ,(x) log,(x).
 xE X

 We get

 En(pd)-En(u) = Eu (x) logu(x)-E p6(x) logpd(x)
 x x

 = , (x) log,(x)-Ed log 0(t(X))+logqO(O)
 x

 = Eu (x) log,u(x) -log 0(tO) +log O(O)
 x
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 76 S. L. Lauritzen Scand J Statist 11

 = ,u (x) logu(x)- jiU (x) log (t(x)) + log q(O)
 x x

 = ,u (x) log 8((x)

 where the last inequality is the information inequality. (5.5) represents a definition of the

 expectation of a semigroup-valued statistic as an additive functional on EXP(S)

 def

 [E, t(X), 7] = E. log R(t(X))

 and p6 is then the probability measure on X maximizing the entropy subject to the
 constraint

 E,, t(X) =to

 where [to, y]=logn(to).
 It should be noted that the fact that exponential families are extreme point models

 depends heavily on the particular simple repetitive structure and the symmetry in the

 conditional distributions. If we e.g. consider the family of distributions given by

 XI ... Xn,... being independent with

 p(X nIX)=7ine OxnI(l+-r e9), OE R

 where x, E {O, l} and (@n)nEN is a fixed and known sequence of positive real numbers,
 we get for the joint distribution of XI, .. . ,Xn

 nn

 i.e. for all n we have an exponential family with

 tn(XI, ... 9Xn) = XIl+ +Xn

 being minimal sufficient (and transitive). The conditional distributions of the observations

 given the statistics are

 q(x1,s. . .,x,|t) = 7r i ) /Y( 9 . .. 9a 7n)

 if xi + .. . +xn =t, and zero otherwise, where yt are the elementary symmetric functions

 Y,(:T1 T * * * T Un) E ;t xiJ
 XI+...+Xn=t i=

 xi E {O, 1}

 It follows from the results of Pitman (1978), see also [EF] pp. 91ff., that this family
 corresponds to an extreme point model if and only if

 .7rn/(l +7 I ) = X * (5*5)
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 This again reflects the fact that 0 is consistently estimable from one realization of

 Xi, ... if and only if (5.5) is fulfilled. As is easily seen, (5.5) is equivalent to

 lim V( Xn) = an e0(1 +lnn e@0)2 = o.

 A related example is the model given by XI, ... ,X", ... independent and Poisson distributed
 with E6Xn=on for 0 E ]O, oo [. The point probabilities become

 p(x, I...,xn Io) (ii i=lxi e e.

 Again we have for each n an exponential family with

 n

 tn(x I, 9 . * Xn)= ixj
 i=lI

 being minimal sufficient (and transitive) and the conditional distributions of the observa-

 tions given the statistic being

 q(xI, *-9Xnlt) = cn(t) if x+2x2+...+nxn = t

 where

 Cn(t) = E I ! x,**,n

 The situation is here somewhat more delicate than in the previous example but one can
 show ([EF] pp. 119ff.) that

 (a) p( 0) is an extreme point if and only if 0? 1;

 (b) the distributions P(. jy), y E N obtained by conditioning on Yx:

 (- IY) =P(A- I Y = y, 00)

 for some 00oEO, 1[, where

 Y00= > iXi,

 are also extreme points.

 It is unfortunately an open problem whether there are other extreme points but we
 conjecture that this is not the case.

 6. Exponential families for Markov chains

 Consider a sequence of random variables XO, X1, ... , Xn, ..., taking values in a discrete and
 at most countable set W. Consider statistics

 tn(XO9 ,.,xn) = (XO, {nxv}(x-y)erXW,Xn)

This content downloaded from 
�������������192.80.65.116 on Tue, 25 Aug 2020 20:18:24 UTC������������� 

All use subject to https://about.jstor.org/terms



 78 S. L. Lauritzen Scand J Statist 11

 where nt,, are the transition counts

 nxy = # {kI (Xk, Xk+ )) = (x, y)} -

 Diaconis & Freedman (1980) have shown that the extreme points of the class of probabil-

 ities for which tn is sufficient for all n and the conditional distribution of the observations
 given the statistics is uniform on the set of strings (xO, ... , xn) with given first and last value
 and given transition counts, fall into three classes

 (1) recurrent Markov chains

 (2) processes starting with a fixed string of transient states and continuing as recurrent

 Markov chains

 (3) totally transient processes.

 If X is finite, only the types (1) and (2) apply. Results of Hoglund (1974) indicate that a

 similar result can be obtained by considering the statistics

 tn(XO ...,Xn) = (XO, t(xO,XI) i) ... E t(Xn -lXn)Xn)

 where

 t: x T- S

 is a fixed statistic into an Abelian semigroup (S, E3). In the finite case the non-degenerate
 extreme points then correspond to recurrent Markov chains with transition probabilities

 Po{Xn+i = yX|Xn = x} = eo(y) O(t(x, y))I(e9(x) 0(0)), 0 ED+

 where e, is a positive eigenvector corresponding to the maximal eigenvalue O(0) of the
 positive matrix:

 {O(t(X, Y )) I(x, y ) E Xx ?

 E 0(t(x, y )) eo(y) = O(0) eo(x)
 y E X'

 and D+ is the set of positive exponential functions. This gives joint probabilities having

 X0=xo degenerate and

 p(X, * ...* Xn) = e6(Xn)Ieo(xo) O(0)-0(t(Xo,X1) D ... t(Xn- I, Xn)).

 Unfortunately we do not know a clear proof of this result at present, nor do we know how

 it extends to the infinite case.

 Note that the example studied by Diaconis & Freedman corresponds to the case where

 S is the semigroup of positive integer valued measures on XxT with t(x, y) being the

 measure degenerate at (x, y), thus being an analogue of the family of arbitrary distribu-

 tions, as considered in the previous section.

 7. Linear normal models

 The case of projective systems of linear normal models can fortunately be solved com-

 pletely. Let I be a directed set as usual and let

 W.= Rn
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 where ni<nj for i<j and ni<oo. As projections we take a system of linear maps Aij, i<j
 satisfying

 AijAjk =Aik for i <j < k

 AiuAJ Ii, i <j

 where * denotes transpose and Ii the identity on Rni= i The projective limit can be
 identified with RN.

 Let further Li, iE I be a family of linear subspaces of Xi satisfying

 Aij(L) = Li,

 and take now as sufficient statistics

 ti(x) = (BiX, I1x12)

 where Bi is the orthogonal projection onto Li and 11 is the standard Euclidean distance.
 The conditional distributions q( I(y, S2)) should be taken uniform on the sphere

 {xE R 1Bix=y, 1IxI12 = s2}

 If we let Aij be the restriction of Aij to Lj, {(Li, i EI), Aij, i<j} is a projective system too,
 and we can find the projective limit

 L = lim Li
 iEI

 with canonical projections Ai. If we now consider the model given as

 E = LXIO, oo[

 and the distribution of Xi given 0=(t, C2) as

 Xi - N(Ai $, (J2Ii),

 we can show ([EF] pp. 217 ff.) that this is an extreme point model if and only if both of the

 following are satisfied:

 (a) ni-dim(Li)-->oo i-*oo
 (b) Vi:AyBjAL-3O j Xoo

 Condition (a) says that the degrees of freedom available for estimating an should tend to

 infinity and (b) that the maximum likelihood estimate of Ait=EeXi should be consistent.

 To see the latter we note that based on Xj, the maximum likelihood estimate of Aj1 is BjXj
 and since Ai=AijAj, AijBjXj is the maximum likelihood estimate of Ait based on Xj. But
 this has variance equal to

 (AuBj) (AijBj)* = AijBjA*

 since B-BjB=B/=B1 because Bj is an orthogonal projection. As a special case we have the
 additivity models for two-way classification, i.e. where I=NxN,

 ITM n = {(xiu)i=i,...,m,j=1,..,nJXijE R}

 Lm n= {(x)lxu= ai+/j, i = 1, ... m;j= 1 ...n}

 and Aij are coordinate projections.
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 If we consider the models defined as (Xij)(ij)ENxN being independent and normally
 distributed with

 Xij N(tjj, X2)

 where

 ('jy)i=1,... mj e1,...,n E Lm,n Vm,n, o2O,

 this is an extreme point model as shown in [EF] pp. 223-24.

 Another special case is determined by the linear regression problems with I=N, Tn=Rn
 and

 Ln = {(X1, . . ., Xn) |Xi-=a +Pjtil

 where (tl, ..., tn,, ...) is a fixed and known sequence of real numbers, the model having
 (Xn)nEN independent and

 Xn - N(a+/3tn, o2) a, , E R, o > O.

 This is an extreme point model if and only if

 n

 SSD n= > (ti-t_)2__3 cc, n --oo (7.1)
 i=l

 where t'=(tl+...+tn)ln, see [EF] p. 225 for a proof of this.
 These results reflect the fact that the row-and column effects in the additive model for

 the two-way classification are consistently estimable when the number of rows and
 columns both tend to infinity. Also that the parameters in the regression model are
 consistently estimable if and only if condition (7.1) is fulfilled.

 8. Models for 0-1 matrices

 An interesting class of examples different from the usual class of exponential families are
 extreme point models for 0-1 matrices.

 Aldous (1981) has investigated the class of doubly infinite arrays (Xij)i,jEN of random
 variables that are row-column exchangeable (RCE-arrays), i.e. satisfying for all
 m,n,;rES(m), oES(n)

 (X i=1,...m;j= 1,..., n (X (i)3r())i=1,...,m;j=l,...,n

 where S(m) is the group of permutations of m elements. If we consider the special case

 where Xij takes values in {0, 1} this corresponds to the repetitive structure, where
 I=NxN, X[m,n] is the set of mxn matrices with elements either zero or one, t[m, ,] being
 a maximal invariant under the action of S(m)xS(n) on t ,,] defined by permutation of
 the indices. Finally the row-column exchangeability corresponds to the conditional distri-
 bution of the matrix given the statistic being uniform of the corresponding orbit.

 The extreme points of the class of RCE-distributions are those that are dissociated, i.e.
 where

 (XLi) im;j_n and (XU)i>mj>n

 are independent for all m and n.
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 Further, any such array can be matched in distribution by choosing

 (i) a measurable function h: ]O, 1[3 _{O, l}

 (ii) independent sequences (i)iE N' ()jEN' (Aij)i,jE N of i.i.d. uniform ]0, 1[ random varia-
 bles, and letting

 X,*J = h(tj, 77j, A ij),

 i.e. X*J is composed by h from a random row-effect ej, a random column-effect ?jj and an
 interaction Aij. An alternative formulation lets (Xv*) be conditionally independent given

 (0i)iEN (Tj)jE N and the conditional probabiliity of (Xv*) being equal to 1 is now q(tj, q7). The
 "parameter" is here h (or p) but it is unfortunately not clear in which sense the model is

 overparametrized, since different choices of h can give the same q5 and different choices of
 p the same distribution of X*J.

 A different but related model is Rasch's model for item analysis. In this model, the
 random variables Xij should be interpreted as the response of a person j to a question i and
 the model lets Xij all be independent with

 Paw p{Xij = 1} = 1-P., P{XY = O} = a1 Pi
 l+aj/3J

 where a=(ai)ie N and P=(3j)jEN are sequences of unknown non-negative parameters. The

 marginal point probabilities for (Xu)im j,an are then

 m n

 m n H. f a; H PS)
 PaQ P{X[m,nI = X[m,n} n H H 7I+ - = (8.1)

 j=1 j=I I+jJ f fHH(I+ ai3j
 i j

 Where rj=Ej7=1xU, sj=ET x, are the row- and column sums of the matrix X[mn].
 The set of row- and column sums is a sufficient statistic and the conditional distribution

 of the matrix given the statistic is uniform on the set of matrices having the given row- and
 column sums.

 In the repetitive structure described in connection with the RCE-arrays it is not clear at
 present what the corresponding extreme point model is. However one can show ([EF] Ch.

 IV.7.) that the following condition is necessary for Pa, p to be an extreme point

 A, an OE n =O A: =i: 3
 n=1 (1 +an)' n= I(1 +Pn)'

 Further the condition below is sufficient for Pa,,, to be an extreme point:

 B: " = oo

 This reflects the fact that if A is not satisfied, the parameters are not consistently estimable
 from observation of the infinite matrix.

 If e.g. En'=13n(1+fn)i-2<oo the a-s are not estimable, if En=Ian(l+a a-2<oo the j3-s are
 not. On the other hand, if B is satisfied, both the a-s and /3-s are consistently estimable up

 6- 848192
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 to a constant factor that can be multiplied on the a-s and divided into the /3-s. In the special

 case where all the a-s and /3-s are contained in a compact interval not containing zero,

 condition B is trivially fulfilled and consistent estimation is possible. Haberman (1977)

 investigated asymptotic properties of maximum likelihood estimates under this compact-

 ness assumption and showed uniform consistency and asymptotic normality along cofinal

 sequences, where the number of rows and columns tend to infinity at not too different

 speeds. It would be interesting to see asymptotic theory under condition B (or A).

 Note that as a consequence we see that the set of extreme points is not closed in the

 weak topology. If we define a(N), PU) by

 { I if i>N,

 p(.IN) are all extreme since condition B is satisfied and

 Pa(N) p(N Pa, p

 where ai=i2=/i. But Pa, p is not extreme since condition A is violated.
 If we consider the Rasch model in the different repetitive structure where the number of

 rows m is fixed and only the number of columns n is allowed to tend to infinity, P" p is
 never extreme. The corresponding extreme point model is then obtained by conditioning

 on the sequence S=(s1, S2, ...) of column sums and considering this as a fixed "parame-
 ter". We then get the probabilities

 n m

 Pa, s{Xi = xij, i < m, j - n } = 7l ySj(a 1 ...,am)-l aXii
 j=li=l J

 where Yk( ..., ) are the elementary symmetric functions. If the sequence s has infinitely

 many coordinates that are not equal to 0 or m, Pa,s is extreme and the remaining extreme
 points consist of various degenerate measures, see [EF], pp. 99ff.

 Note that the idea of considering the extreme point model here leads to a conditional

 inference procedure which is also supported by other arguments, since the conditional

 model is free of the nuisance parameters (/3i, ...,/,,n, .--), see e.g. Andersen (1973).
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 DISCUSSION OF STEFFEN LAURITZEN'S PAPER

 Ole E. Barndorff-Nielsen (University of Aarhus)

 This impressive paper brings a variety of questions to mind, but the following comments

 are restricted to two of these.

 It appears that there are some intriguing relations between the concept of extreme point

 models and the Fisherian ideas of information and conditionality.

 Thus, for the model function

 n n

 p(xl, . ... ,x 7r" flnXt (I +.7i e 0) -'e' x=I' n(1 xIO) = fJ 1 7
 i=1 i=1

 considered in section 5, we have that the observed Fisher information is

 n

 jn(9) = E i e91(1 +,7ri e6)2.

 For any fixed value of 0 we find, writing jd(0) for lim, >j,(0), ix(0 = Xo E T/(l +;ri)2 = 0;
 in other words, observed information tends to oo if and only if the model is an extreme

 point model. (Since the model is regular exponential we have j (0)=V,(S71xi) so that the
 above double-implication is a paraphrase of a remark in section 5.)

 Similarly, for the sequence x1,x2, ...,xn, ... of Poisson variates with E0Xn=on we have
 that observed information based on xl, ..,x, is given by
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 n

 jn(0) = E i (i 1) oi 1,
 i=2

 and again the model is extreme if and only if j.O(0)= mo.
 As a third example, relating to the Bernoulli model discussed in section 1, suppose that 0

 in that model follows the beta distribution

 P(O; a) = F(2a) a1(160)a1
 F(a)2

 The observed information on a provided by x1, ...,x, is

 jj(a) = 2V/ (a)-4V)'(2a)-ip' ( xi+a) -ip (n-E Xi+a) +4Vp'(n+2a)

 and (with probability 1)

 j.(a) = 2V'(a)-4iV'(2a).

 The finiteness of jx,(a) is a reflection of the fact that whatever the value of a the law of the
 Bernoulli sequence is not an extreme point.

 In considering observed information in the Rasch model, as given by (8.1), there is a

 slight simplification in reparametrising to pi=logai and ipj=log/31. Observed information
 on qi, given the other parameters, is

 n eT i+v}j

 j=X (I+eTJ

 from which it is immediately plausible that condition A, of section 8, should be a
 necessary, but not in general a sufficient, condition. It seems not unlikely that condition B
 has an interpretation in terms of the observed information matrix for the full parameter set.

 The author has already indicated a relation to conditional inference, by the last para-
 graph of the paper. What considerations does the viewpoint of extreme point models lead
 to in connection with the so-called nonergodic exponential models (cf. Basawa & Scott

 (1983) and references therein)? For example, suppose xI,x2, Xn,... follows the auto-
 regressive process of order 1

 Xn =#xn_ I+ Un) n = I1,2,..

 where x0=0 and u1, u2, ...,un, ... is a sequence of independent and N(O, 1)-distributed
 random variables while the regression parameter , can take any real value. The model for

 (XI, ... , Xn) is then a (2, 1) exponential model, of the nonergodic type, and inference on /3
 based on xI, ... , xn should in principle be performed conditional on an ancillary statistic.
 (The signed likelihood ratio ancillary or the affine ancillary can be used as approximate
 ancillaries, cf. for instance Barndorff-Nielsen (1980)). Is there a derived extreme point
 model for /3 in this case and how does the inference from this compare with the more
 traditional conditional approach?

 References

 Barndorff-Nielsen, 0. E. (1980). Conditionality resolutions. Biometrika 67, 293-310.
 Basawa, I. V. & Scott, D. J. (1983). Asymptotic optimal inference for non-ergodic models. Springer,

 Heidelberg.
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 A. P. Dawid (University College, London)

 For some years now I have followed with great interest and admiration the work that

 Steffen Lauritzen has so elegantly surveyed here. It has two qualities in particular which I

 appreciate: the beauty and depth of its mathematics, and the importance of its underlying

 statistical concepts. Here, at last, is a topic truly worthy of the much abused title

 "Mathematical Statistics".

 On the mathematical side, we have a rich vein of deep and difficult problems from

 which, so far, only a few nuggets have been mined. The statistical side is, perhaps, even

 more challenging, since it addresses the most basic question in Statistics: Where does the

 model come from? In this we have a philosophical challenge to the very foundations of our

 subject.

 The meaning and interpretation of a statistical model are all too rarely questioned. Is

 there a "true model"? How are probability assignments to be verified or falsified? A

 simple but instructive example is the following (Dawid, 1984). Consider a model for a non-

 replicable time-series (X,: lIt<oo), under which the X, are jointly normal with E(X,)=,u,

 var(Xt)=o2, cov(X,X,)=eoo (s$t). Here ,u, o2, p?0 are arbitrary parameters. If ?>O,
 this model asserts that different X's are positively correlated. What does this mean? How

 can it be established? Can e be estimated? It turns out that none of the parameters is

 consistently estimable. In particular, the mle of e is always 0. What is going on here?

 Now the above model implies that the (X,) are exchangeable. So, by de Finetti's

 Theorem, they will become independent after conditioning on the tail a-field. In

 fact, letting Y=limn, xn1 =IXt, Z,=X,-Y, we have X,=Y+Z, with Y-N(u,Qa2),
 Zt-N(0, (1 -e) o2) (t= 1,2, ...), all independently. The corresponding extreme-point model
 is obtained by conditioning on Y, thus recovering the submodel of the original model for

 which e=O. No sequence of data could distinguish between a distribution with e>O and

 one with e=O. What then is the meaning of the "correlation" Q? It seems clear to me that
 any use of the original model, rather than its extreme-point version, is fraught with danger.

 Another important philosophical application of the ideas of extreme-point modelling is

 the following (Dawid, 1982 a, b). Consider a collection X of variables, and suppose that it

 can be generally agreed that uncertainty about gX is the same as that about X, for all

 transformations g belonging to some symmetry group G. The archetypal example is

 exchangeability, with g a permutation of elements, but other important applications arise

 in experimental design layouts, for example. As with exchangeability, such problems can

 usually be embedded in an appropriate invariant repetitive structure. The extreme points

 of the family of all invariant probability distributions constitute a family which has every

 right to be called "the" appropriate statistical model under the assumed symmetries.

 (From exchangeability of events we can thus derive the Bernoulli model.) In other words,

 we have conjured probability distributions out of thin air by invoking ideas of symmetry

 alone. This magical process has, I believe, deep implications for the philosophy of

 Probability and Statistics.

 References

 Dawid, A. P. (1982 a). Intersubjective statistical models. In Exchangeability in probability and

 statistics (ed. G. Koch and F. Spizzichino), pp. 217-232. North-Holland Publishing Company.
 Dawid, A. P. (1982 b). Probability, symmetry and frequency. Research Report 13, Department of

 Statistical Science, University College, London.
 Dawid, A. P. (1984). A Bayesian view of statistical modelling. Bayesian inference and decision

 techniques with applications: Essays in honor of Bruno de Finetti (ed. P. K. Goel and A. Zellner).
 North-Holland Publishing Company (to appear).
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 Persi Diaconis (Stanford University)

 It is a pleasure to congratulate Lauritzen on this superb summary of a rapidly expanding

 area. I would also like to acknowledge how much I appreciate his continued contributions

 to this area. Lauritzen realized the importance of Martin-Lof's treatment before anyone

 else. He made needed basic changes (extending the conditional distribution from uniform

 on the inverse images to a general projective system). All of this was done well before the

 articles of Dynkin & Follmer made this area fashionable. I only lament that some of his

 research remains in unpublished technical reports and urge him to broader distribution.

 I want to make a comment, add a reference, and ask a question.

 Comment. The example in Section 5 concerning the extreme points of the model

 generated by independent Poisson variables with parameter O' is closely related to an
 important technical tool in the study of random permutations. Let S, denote the symmet-

 ric group on n letters. The cycle vector of 7 ZE Sn is the vector a = (aI (7r), a2.r), ...) where
 ai(r) is the number of cycles in :r of length i, when . is written as a product of cycles.

 If 7r is chosen at random on Sn, then a is a random vector. Many features of permuta-

 tions can be read from a. For example, a, is the number of fixed points of 7r; the
 distribution of a, is one of the oldest in probability-Monmort showed in 1708 that
 P{a I=0} 1- /le. The order of 7 is the smallest integer n such that ;r=id; the order of ;r is
 the least common multiple of those i such that ai*0. Erdos & Turan have shown that as n
 tends to infinity, log order (:r) has mean (logn)2/2, variance (logn)3/3, and a limiting

 standard normal distribution. Lloyd & Shepp discuss the distribution of the number of

 cycles and the maximum cycle length.

 All of the distributions involved can nowadays be read off of a probabilistic construction

 closely related to Lauritzen's example:

 Let N have a geometric distribution with parameter p. Choose a permutation at random

 by first choosing N and then choosing :r uniformly in Sn. Lloyd & Shepp show that under
 this model, the random variables ai(r) have independent Poisson distributions with
 parameter P/li for i= 1, 2, .... Here the sufficient statistic is L iai as in Lauritzen's example,
 and the conditional distribution is

 P 1a if Eia,=n P{al, ...,anlE i ai = n ' a . II !
 0 otherwise.

 This is of course the distribution of the vector a from a randomly chosen permutation in

 Sn.
 In applying these facts to probability problems one computes the distribution of func-

 tionals under the independent Poisson model and then argues that this is the correct

 asymptotic distribution by using a Tauberian theorem. It would be of great interest if there

 were any other extreme points which could be used systematically.

 Reference. In discussing Aldous' theorem on zero-one matrices, it is remarked that the

 extreme points are not completely known. This problem has been solved by Hoover who

 showed the only indeterminancy is measure preserving transformations of the coordinates

 of h. Alas, Hoover's proof makes heavy use of modem logic (model theory) and I do not

 know any probabilist who understands the result.

 Quiestion. One of Lauritzen's main contributions to this field is the explicit recognition
 that non-uniform distributions were needed as conditional distributions to get the usual
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 models. I would dearly love to hear a conversation between Lauritzen and Martin-Lof on

 this point. I wonder if he can provide us with a discussion of the many issues involved.

 References

 Hoover, D. A. (1981). Relations on probability spaces and arrays of random variables. Preprint,

 Institute for advanced Study, Princeton, New Jersey.

 Shepp, L. A. & Lloyd, S. P. (1966). Ordered cycle length in a random permutation. Trans. Amer.
 Math. Soc. 121, 340-357.

 S0ren Johansen (University of Copenhagen)

 First I would like to congratulate Steffen Lauritzen on a good and readable paper which
 tries to tackle a very important problem in statistical inference namely the concept of
 model building.

 The basic idea is that statistical models have more structure than is usually reflected in
 the discussion of inference principles.

 By making this structure, i.e. the repetitive structure, more explicit one can embed the
 model into a family of models which is natural from the frequentist point of view.

 An important aspect is the interpretation of the parameter, and in fact the definition of
 the parameter as the limit of a statistic in a large experiment.

 My comments will concentrate mainly on this point by considering three examples from
 the paper.

 1. Binary exchangeable variables.

 2. Independent Poisson variables with EX,=O'.
 3. Independent Gaussian variables with EXn=Qtn,

 VXn = a2 and t2 <oo.
 n=l

 In the first example de Finetti's result shows that the model depends on a probability

 measure It on [0, 1], which can then be considered the parameter.
 The family is then a maximal family and not extremal. The extremal model is found by

 restricting the parameter to be a one point measure on [0, 1].

 The implication of the theory is that,u it not identifiable from a realization of {X4J. If the
 parameter is restricted to be a one point measure then it can be identifled at least
 asymptotically and one gets that Xn-*0 a.s. P6.

 Thus the extremal family can be used to analyse identifiability and shows to what extent

 the parameter can be estimated consistently. In a sense nothing is lost by going to the
 extremal family as along as only one realization of the process is observed.

 In the second example we have independent Poisson variables with mean EXn= on.
 If 0>1 these measures are extremal and if 0<1 then they are not. One should instead

 condition on Y. = EnInX, where VY. = l E n2OnC<a:, 0<1.
 Thus again the extremal family indicates exactly what can be estimated consistently,

 namely 0 if 0>1 otherwise just Y00.
 The price for going to the extremal family is of course that we give up 0 (if 0<1) and

 replace it by Y.. Now Y. may have an operational meaning, in the sense that we can
 estimate it, but 0 may still have an outside meaning even if it is less than 1. The experiment
 performed does not help us in determining 0 consistently, still an estimate of 0 can be
 made and confidence intervals can also be made.
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 The final example is typical of this situation: In this case we have

 /3gn=Si7=1Xi ti/E 7 1 t -N(J3, au/EI7 1 t3) which converges to /3B-,-N(y3, 6/E t2) which is easy
 to use for inference purposes. The extremality considerations imply that one should

 condition on /3. and consider the distributions of Xl, ...,Xn given ,8 which does not even

 involve the parameter P. Thus the parameter ,B should be removed from the statistical
 problem alltogether and yet / may have an outside interpretation, whereas the extremality

 considerations only give / an operational meaning in relation to a specific design.

 My last comment will be on a comparison of the fixed effects and random effects model

 for one way analysis of variance.

 Let the data be given by Xij, i= 1, ...,k, j= 1. n.
 If we can take more measurements by sampling from each of the k groups, i.e. by letting

 n-* 00, we perform the data reduction given by

 n k n

 Xi.= Xi In and s j (Xl-X)2/k(n-1).
 j=1 i=1 j=1

 The extreme point model underlying this is clearly that of the Xij's being independent
 and Xuj-N(tj, a2).

 If instead we want to extend our observation by including more groups then we

 condense the data further to

 k n k

 X= E E XI/kn; S2= (Xi. _g)21(k- 1); s2.
 i=1 j=1 i=1

 The extreme point model generated by this data reduction is that the Xij's are independ-
 ent between groups and that within a group we have EX`1j=, VXij=o2, V(Xij,Xim)=v,
 j*m, where v?-cw 2I(n-l).

 If we allow both n and k to go to infinity we get that v3O and in this case we have the

 usual representation of the model:

 Xij= Yi+ Ui

 where the Y's and the U's are independent such that EYj=4, VYi=v, EUij=O and
 VUij=o2, hence w02=o2+v.

 Thus the difference between the three models comes out very clearly if one includes in

 the model formulation in what way one wants to extend the set of observations.

 Reply by Steffen Lauritzen

 First I would like to thank the participants in the discussion for their interesting comments

 and questions.

 A. P. Dawid points to the possibility of deriving statistical models from symmetry

 considerations. I should like to point out explicitly that in a mathematical sense, the

 "symmetry" approach is almost equivalent to the "sufficiency" approach. To each
 sufficient system of statistics, there is a system of transformation groups (those preserving

 the value of the statistics). To each system of groups, there is a system of statistics (the

 maximal invariants). The difference between the approaches is of a nonmathematical
 nature, and due to the fact that in certain cases one can describe groups in simple terms

 having an immediate intuitive appeal (row-column exchangeability), whereas the corre-
 sponding maximal invariants are strange objects. Conversely, it might be the statistics that
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 are immediately understood (row-column sums), whereas the groups seem artificial and
 appear as a "coincidence". It seems an interesting task to try to combine the approaches

 systematically. For example, referring to section 8 of the paper, it seems reasonable to

 conjecture that if an array X=(Xfj)i,JEN of 0-1 valued random variables is row-column
 exchangeable and the conditional distribution of X[m, n] given its row and column sums is

 uniform, as in the Rasch model, then the array has the same distribution as (Xv*f) where Xij
 are independent given | and ti with

 P{XJ. 1* ,8 =i?7

 and 4=(i)iEN are i.i.d. with distribution F and independent of l=( )jEN that are i.i.d.
 with distribution G. In many respects this is a more reasonable model than the one
 discussed by Aldous and the Rasch model itself.

 S. Johansen points in several examples to the fact that parameters might have a meaning
 outside the repetitive structure under consideration, and that a strict application of the
 idea of "always using the extreme point model" may lead to a total removal of the
 parameter of interest from the problem. Still one can make confidence intervals etc. for the
 parameter in question. An important distinction to be made here has been done explicitly
 by Dawid (1982), who introduces the notion of extrinsic and intrinsic parameters. A
 parameter is extrinsic, if it has a meaning from a well defined context different from the
 experiment under investigation, and if this is not the case, it is intrinsic. A very clear
 example of an intrinsic parameter is the "difficulty" of a question and the "ability" of a
 person in the Rasch model. A precise definition of an intrinsic parameter is one which is
 the limit of the sufficient statistic in a particular repetitive structure, in other words the
 canonical parameter in an extreme point model. Now if, as in the regression example
 discussed by Johansen, an extrinsic parameter , happens not to be a function of the
 intrinsic parameter j1), we should get a strong suspicion that the design (E t2<0<) is

 inadequate. Also one should be extremely careful with confidence intervals since these
 typically refer to an (in this circumstance) unjustified frequency interpretation of certain
 probabilities.

 0. Barndorff-Nielsen points to a possible connection between the notion of extremality
 and infinite Fisher information and asks for the connection to work of Basawa, Feigin,
 Heyde and Scott on non-ergodic exponential models. There is some connection, although
 this is not as clear cut as the examples might suggest. Let me first describe the relations in
 verbal terms and then through some examples give a more precise statement. The notion
 of extremality is a strict version of ergodicity. Infinite Fisher information is a weak
 concept and could be termedfirst-order ergodicity. The ergodicity considered by Basawa
 et al. is similarly a property of weak type and could be termed second-order ergodicity.
 Under suitable regularity conditions (ensuring that the information is well defined) extre-
 mality will imply ergodicity of first and second order, whereas the converse will only be
 true in special cases. Let us recall that Basawa et al. terms a model non-ergodic if the
 observed information

 M(O, XI, ..., Xn) = -D 2log L(6; XI, . . . Xn)

 properly normalized, converges to a non-degenerate random variable. The Neyman factor-
 ization theorem ensures that the observed information is a function of the sufficient
 statistic and thus that this limiting random variable is measurable w.r.t. the tail u-algebra
 of the sufficient statistics. Thus all extreme point models are second-order ergodic,
 provided that the observed information is well defined. It is, however, rarely so that this
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 limiting random variable generates the tail u-algebra. In e.g. exponential families, the

 observed information about the canonical parameter does not depend on the observation

 at all. In general the observed information depends heavily on the parametrization, and it

 is not clear to me whether this is also the case for second-order ergodicity. Basawa et al.

 have formulated a "tail conditionality principle" involving a conditioning on the tail a-

 algebra generated by the observed information, treating the limiting random variable as a

 parameter. This is obviously now related to the idea of investigating the extreme point

 model, although the latter involves a much stronger conditioning.

 And now to the examples: Suppose (Xn)nEN are independent Poisson variables with

 EX1 = e6, EX, = e20, n ? 2; 0 E R.

 The statistic

 n

 Tn = XI +2 Xi

 is sufficient and the observed and expected Fisher information are equal and equal to

 in(O) = jM(O, xI, .. . xn) = 4(n- 1) e20 +e

 The model is clearly both first and second-order ergodic but the event

 A = {Tn is even infinitely often}

 = {Xl is even}
 a.s.

 is tail-measureable with Pe(A) I {0, 1}, and the model is not an extreme point model. The
 corresponding extreme point model is obtained by introducing an extra parameter to

 describe the events A and AC and conditioning on this.

 If we reparametrize by letting 0=logA, we get

 jn(AJ x , XI,xn) = 2(n-1)+t A 2

 and the tail a-algebra generated by the observed information happens to be identical to that

 generated by Tn. It now depends on what is meant by "proper normalization" whether or
 not the model is second-order ergodic in this parametrization.

 A less pathological example is a simple Galton-Watson process:

 Xn

 Xn+1 =Xn+E Yin, XO= 1
 i=l

 where (Yin) are i.i.d. with a geometric distribution:

 PO{Yin =y}( = (-0)6, 0>0, yEO, 1,2,...

 The likelihood function is proportional to

 Ln(6;x1I. ..... Xd) = (1- 0)x0 ? -l0xnXO = (I_0fZ 6Xn- I

 where Zn= 1 +xI + . .. +Xn-1. The observed and expected Fisher information are

 M(O; Xl= * ** Xn) = Zn( _-2+ (Xn-1) 0-2

 Am -9 =i (1-) n_ 2 I) 0(-)- I
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 The model is first-order ergodic, but not ergodic in the sense of Basawa et al. see e.g.

 Basawa & Scott (1983), and therefore not an extreme point model. In fact

 Xn ( 1- 0) _*W(0)

 where W(O) has an exponential distribution. Conditioning on W=w, Xn-Xn,l are inde-
 pendent and Poisson distributed with geometrically increasing expectations, and the model

 is therefore closely related to the Poisson example considered in section 5 of the paper.

 Finally Barndorff-Nielsen raises a question concerning the extreme point model corre-

 sponding to an explosive autoregressive process. The question is certainly interesting, but

 it would demand a publication on its own and a certain amount of hard work to give a full

 answer.

 As a partial answer, let me say the following. The corresponding minimal totally

 sufficient statistic is

 n-I n

 Tn = EVX' E Xi Xi- IXn
 i=lI i=l

 The maximal family will contain measures given as

 Xn+1 =/3Xn+y/n +En,

 where En are i.i.d. N(O, r2), r2>O and y and /3 are real-valued parameters. Thus an extreme
 point consideration seems in the first place to give rize to an extension of the model. In the

 case 1/31<1 these measures are probably extreme, whereas this is not the case when I/l> 1,
 since then Ex2 can be normalized to converge to a non-degenerate random variable. I

 hope to be able to answer this question more completely in the future.

 P. Diaconis asks for the status of the non-uniform conditional distributions. I can hardly

 give a conversation between Martin-Lof and myself at this place, but I think the following

 is a correct evaluation. It was an important and interesting point made by Martin-Lof that

 surprisingly many interesting statistical models can be generated by uniform distributions.

 It requires a slightly more general notion of uniformity, cf. Martin-Lof (1975), than that
 described in Martin-Lof's earlier work (1970, 1974). It also requires some ingenuity, see

 how the Poisson model is derived in Martin-Lof (1974). I am not too convinced that non-

 uniform distributions are really needed as suggested by Diaconis. I introduced the non-

 uniform distributions as a technical convenience to make the theory more flexible and to

 be able to treat more examples without having to be as ingenious as was otherwise

 necessary.

 References

 Basawa, I. V. & Scott, D. J. (1983). Asymptotic optimal inference for non-ergodic models. Lecture
 Notes in Statistics, 17. Springer, Heidelberg.

 Dawid, A. P. (1982). Probability, symmetry and frequency. Research report. University College,
 London.

 Martin-Lof, P. (1970). Statistiska modeller. Notes by Rolf Sundberg. Mimeographed (Swedish).
 Martin-Lof, P. (1974). Repetitive structures. In Proceedings of Conference on Foundational Ques-

 tions in Statistical Inference. Aarhus 1974. Memoirs 1 (ed. 0. Barndorff-Nielsen, P. Blxsild and
 G. Schou).

 Martin-Lof, P. (1975). Reply to Sverdrup's polemic article "Tests without power". Scand. J. Statist.
 3, 161-165.
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