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Extreme Point Models in Statistics

STEFFEN L. LAURITZEN
Aalborg University Centre

ABSTRACT. We give a survey of the general theory of extreme point models in statistics, i.e.
statistical models that are given as the extreme points of the convex set of probability
measures satisfying (in a general sense) a symmetry condition. Special emphasis is payed to
examples, some of which are only partially solved, some are classical and some are recent.

Key words: exchangeability, de Finetti’s theorem, Rasch models, repetitive structures,
sufficiency

0. Introduction and summary

The present paper surveys the general theory of extreme point models as developed in
Lauritzen (1982), (in the following denoted [EF]) with special emphasis on examples. The
proofs of almost all results are omitted from this presentation and appropriate references
are given instead.

It is our aim to point out that a number of statistical models have the common structure
that they are given as the extreme points of a certain convex set of probability measures,
given by symmetry properties (in a general sense). We show that such models have
various desirable properties.

We thereby want to emphasize that the relation between a statistical analysis and a
statistical model is a kind of duality, in the sense that the model can be ‘‘generated’’ by the
analysis and vice versa, reflecting the perception that the model is a particular ‘‘represen-
tation’’ of the analysis.

The probably best known example is the Bernoulli model for repeated tosses of a coin
corresponding to de Finetti’s (1931) theorem:

Let Xj,...X,, ... be a sequence of random variables taking values in {0, 1} and suppose
their joint distribution is exchangeable, i.e. that

P
(Xl’ “"Xn)= (X”(I), ...,Xﬂ("))

for all nEN and all permutations 7 € S(n), the symmetric group of order n. Here X 2y
means that X and Y have the same distribution.
Then there is a unique probability measure x4 on [0, 1] such that for all EN,

1
P{X,=x,...,X,= x,} = f 0" 11— )" "=y (de). .1
0

Moreover, the limit
_ X +...+X
X,= lim —X———*

n—o n

exists almost surely and u is the distribution of X.. We can twist this result slightly by
realising that

[
Xy oo X,) = Ky ooor X ) YTES (m)

5-848192
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66 S. L. Lauritzen Scand J Statist 11

if and only if for all 7€{0,...,n}

P(X,=x1 0 Xy = Xy Xyt Xy =1 ) = — 1y (0, 0.2)
n
(2
and thereby noticing that the class of exchangeable probability measures on {0, 1}N is the
largest class of probabilities for which

t,:{0,1}" = {0,1,...,n}

(X1, e X)) =X1+X0+. X,

for each n is sufficient with (0.2) as conditional distributions given ¢,(X1, ..., X,,)=t.
Further, this class is a convex set, with the independent Bernoulli measures Py{-} as
extreme points. We have a unique integral representation as

P{-}= f Py{-}u(d6)
.1

where
Lioix n=Li x;
Py{X,=x,....X,= x,} =6 (1-6) s

so that, according to Py, X, X>, ... are just independent Bernoulli trials with probability of
‘“‘success’’ equal to 6.

Moreover, because the measure u is ‘‘the limiting distribution of the sufficient statistic’’,
the probability P can be identitied from complete observation of the entire sequence
(X1,Xa,...) if and only if P is an extreme point itself. In fact, observing a single realization
of the process X, X, ... gives rise to just one value of X... This value identifies the mixing
measure u if and only if 4 is degenerate.

The fact that the independent Bernoulli measures are the extreme points of the convex
set of measures, for which x;+...+x, for all n is sufficient and (0.2) are the corresponding
conditional distributions, will in the sequel be expressed as ‘‘the model of independent
identical Bernoulli trials is an extreme point model’.

We shall see that such extreme point models in fact occur quite commonly in statistics
and that results like the above integral representation and interpretation of the represent-
ing measure as the limiting distribution of the sufficient statistic, are of a quite general
nature.

Generalizations of de Finetti’s theorem can be made in several directions. One is to
exchange the spaces {0,1} with more general measure spaces, as done by Hewitt &
Savage (1955).

Another is to consider invariance of distributions under the action of other groups than
the permutation group like e.g. the group of rotations of R"” where the random variables
X, ..., X, all take values in R, cf. e.g. Kingman (1972).

Yet another method is to specify other sufficient statistics than x;+...+x,.

All these generalizations are special cases of the same theory, to be surveyed in the
following.

Section 1, 2 and 3 are devoted to a survey of the general results, 4 to a discussion of the
relation between the theory and inference problems, whereas the remaining sections are
devoted to examples.

The theory is intimately related to considerations in statistical mechanics, see e.g.
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Preston (1979), although slightly different in technique and very different in scope, since
the “‘purpose’’ of statistical mechanical models is to explain observable macroscopic
behaviour from microscopic properties, whereas statistical models are used to infer about
macroscopic tehaviour from observable microscopic phenomena.

A genuine survey of the connection of this line of research to other area’s would itself be
interesting but is outside the scope of the present paper.

A survey paper which has some slight overlap with the present but mostly deals with
different aspects and examples is given by Diaconis & Freedman (1982).

1. Preliminaries. Markov kernels

Throughout the paper sample spaces will be assumed Polish, i.e. topological spaces that
are metrizable, complete and separable. All maps are considered continuous and all
probability measures regular Borel measures. If & is a Polish space, B(Z) denotes the o-
algebra of Borel sets of # and P(Z) the (Polish) space of probability measures on (Z, (%))
endowed with the weak topology, i.e.

P, —>P @ffdPa — ffdP
for all continuous and bounded real-valued functions on .
A Markov kernel IT from £ to % is a function
IT: X B(¥) - R

such that

(i) VxEZ: II(x, -) EP(¥)
(ii) the map x—II(x, -) is continuous.

If IT; is a Markov kernel from & to % and II, is a Markov kernel from % to Z the
composition

II=IL1II,

is the Markov kernel from & to Z given as
II(x, C)=J’ IL(»y, C)II,(x, dy).
¥
A Markov kernel IT from & to % induces a continuous map from P(Z) to P(%) by

ITw (B) = f (x, B) u(dx)
4

and the composition above IT=II,II; is just the composition of the corresponding maps.
If 1: Z— % is a continuous map, it induces a Markov kernel I, as

II(x, B) = 15(t(x)).

We shall instead of I, just write ¢ and we do thus not distinguish between a map and the
Markov kernel induced by it. The application of the Markov kernel induced by ¢ to a
probability u € P(Z) gives the lifted measure u -t

This content downloaded from
192.80.65.116 on Tue, 25 Aug 2020 20:18:24 UTC
All use subject to https://about.jstor.org/terms



68 S. L. Lauritzen Scand J Statist 11

() (B) = (1,u) (B) = f I,(x, B) u(dx) = f 1(t(x) u(dx) =pu(t™'(B)).
E4 x

If u is a probability on £ and #: £— ¥ is a map, a Markov kernel Q from ¥ to Zis a regular
conditional probability given ¢ if

(i) Qu=u
(i) tQ=1,

where the first condition in more conventional terms says

u(B) = f Q0. B)u-t™'(dy), ¥y € ¥.
Y

2. Repetitive structures. Sufficiency

The basis for our further investigations is the notion of a repetitive structure, introduced in
the discrete setting by P. Martin-Lof (1974). A repetitive structure is a projective system of
continuous maps and Polish spaces. More precisely it is given by:

(1) A partially ordered (<) set I which is directed to the right, i.e.
Vi, jEI 3kEIL i<k, j<k.

(2) A family (&, i€ of Polish spaces.
(3) A family (py);; of continuous surjective maps

P -

Satisfying for i <j<k:

PijDjk = Pik-

These maps are called projections.

We think of I as describing a family of experiments with corresponding sample spaces Z;
and p; define the relation between these, i.e. in which sense i is a ‘‘subexperiment’’ of j.
For technical reasons we assume throughout that 7 has a cofinal sequence, i.e. there is a
sequence (i,),enc/ such that

Vi€l 3n€EN: i<i,.

The typical example of a repetitive structure has I as a subset of the set of subsets of a
countable set T, ordered by inclusion, and if A €1, then

= x &,

tEA
and the projections, p4p are just coordinate projections, i.e. for AcB:
Pap(x,, tEB)=(x,, tEA).

Associated with such a projective system we have the projective limit

%=l}g &= {(x;, iIED)|Vi<j :pyx)=x;}
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Scand J Statist 11 Extreme point models in statistics 69

which is Polish (when I has a cofinal sequence) when equipped with the topology of
pointwise convergence. In the standard example of a repetitive structure, & can be
identified with the product X,e7Z,.

We have the canonical projections

pi X— %; given as p{x;, i€E)=x;

and these satisfy p;p; = p; for i<j.
Since later & shall be equipped with families of probability measures, we introduce the
“‘random variables’’ taking values in &;

Xi(x) =pix), where now py(X)) = X;.

The version of Kolmogorov’s consistency theorem given in Bourbaki (1969), ensures a
one-to-one correspondence between a probability measure 4 on & and a consistent family
(u;, i€I) where w,€P(Z) and pyu;=u; i<j. We shall thus write u=(u;i€I) without
ambiguity. 4; can be interpreted as the distribution of X; induced by u.

If {u(6), 6 €O) is a parametrized family of probability measures on & we shall say that a
system of continuous surjective maps

ti:%—)@i, i€l

is sufficient if there exist Markov kernels
Q;
Y, - Z,

such that the following conditions are satisfied

@) Q;t;u(0)=u(0) VOE O, Vi€l

() 1; ;= Iy, Vi€l @2.1)
(i) Q; ¢ P Q= p; Q; Vi<].

Letting Y;=1(X}), (i) and (ii) together ensure that for A € B(%Z), yE¥;
Q/Aly) =pu®0) {X;€EA|Y;=y},

i.e. that ¢; is sufficient in the usual sense, and (iii) ensures that X; and Y; are conditionally
independent given Y;, i.e. that ¢; is transitive in the sense of Bahadur (1954), or more
precisely, that for B € (%)

QdAly)=u(0) {X;€EA|Y;=y, Y;€B}.

For details on this, see [EF].
It follows ([EF], p. 205) that for any increasing sequence i;<i,<...<i,<..., the process
made up by the corresponding values of the sufficient statistics

is a Markov process.
Of special interest to us is the tail-g-algebra

= Na(Y,j>i)
i€l
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70 S. L. Lauritzen Scand J Statist 11

and also the extended tail o-algebra
Ay ={AE€ B Vi€l : WO {A|X;=x} Su@®){A|Y,= 10})},
A, is the o-algebra of events that are conditionally independent of X; given ¥; for all

i€I. The transitivity of the sequence of statistics ensures that we have

&f#(g) 2 ._Qﬂ,.

3. Maximal and extremal families. Basic limit theorems

Suppose now that we have given a repetitive structure, a family of continuous surjective
maps t;: Z—%;, i€l and a family Q;, i€I of Markov kernels from ¥; to Z; such that (ii)
and (iii) of (2.1) are satisfied. We could then ask for the family of all probability measures
uEP(Z) such that also (i) is satisfied, i.e. such that

Q,’t,‘/l,‘z/ti, Vi€l

We denote this family by . and call it the maximal family corresponding to (#;);e; and
(Q)ies. M is maximal with the property that (¢;);¢; is a sufficient system and Q; are the
conditional distributions given #{X}), in other words, (z;) will be sufficient for any family of
the type

{u(), 6EB} M.
M is a convex set and we shall by & denote the extreme points of M, i.e.
UEE[u=Au+(1-A)u, AA€10, 1= p = pu; = ul,

where of course both u,u; and u, are elements of #. € is called the extremal family
corresponding to (¢;);er, (Q:):er and the repetitive structure. A model of the type having

©=%, u(0)=6; i€l

is called a canonical model or an extreme point model.
We have the following results (([EF] Prop. IV, 1.1).

3.1. Proposition. &€ and M are Polish. M is a simplex in the sense that for all u € M there is
exactly one P,EP(&) such that

uA)= f e(A)P,(de), VAE B().
g

Further, if we for any u€u, any fixed cofinal and increasing sequence
i=(i;<i<...<i,<...) and any fixed i€I, A€ B(Z;) define the sequence of random varia-
bles

Z(A) =0p; A Y,)
(=u{X,€A| Y, }), i,>i

we have ([EF], pp. 58-59, p. 208):
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Scand J Statist 11 Extreme point models in statistics 71

3.2. Proposition. Z\(A) is a bounded reverse martingale w.r.t. the o-algebras o(Y; ,m=n).

Further we have
E, Z(A) =u(4)

Z(A) 5 Z(A) =u{A| b},

The extreme points are characterized by the following main theorem ([EF], p. 209):

3.3. Propesition. For u € M the following are equivalent:

) u€e

(ii) s is p-trivial (A € o, =u(A)€{0,1})
(iii) o, is p-trivial
(iv) Z.(A)=u(A) a.s. u.

And as corollaries we have

3.4. Corollary. P, in Proposition 3.1. defines the distribution of Z.(+) in the sense that for
all BER(E)

#{Z(-)EB} =P,B)

To see this, realise that because everything is countably generated, (iv) can be extended to
hold for all A € B(%) simultaneously and

u{Z.(-)EB} =f e(Zm(-)GB)P,,(de)=J’ 15(e) P (de) =P (B). O
g €

3.5. Corollary. P,{Z(-)€ €}=1, which is obtained by letting B=% in Corollary 3.4. O

Interpreting these results we can think of Zl(A) as a canonical estimate of u(A) and
Proposition 3.3 (iv) tells us that if x € & this estimate is strongly consistent, i.e.

Hn(A)=Z,(A) = Z(A)=p(A) as.p.

and further that this even characterizes the measures in € among those in .

In other words, the parameter in an extreme point model is always consistently estima-
ble, and is defined in terms of the observations (0=Z.).

In specific examples it is in general very difficult to identify & in a reasonably explicit
way. We shall in the following give various examples where this has been done at least in
part.

4. Implications for statistical inference

The theory of extreme point models per se has no direct relation to statistical inference as
it is usually discussed, since it concerns an analysis of the model rather than the inference
procedures themselves, the model being regarded as fixed. We believe that our consider-
ations do have consequences for statistical practice, where after all the establishing of the
model is an important part of the inference procedure. Many conditioning arguments used
in statistical inference can actually be seen as modifications of the model rather than the
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72 8. L. Lauritzen Scand J Statist 11

inference procedures. We hope to throw more light on this when discussing the examples.
The results briefly surveyed in the previous two sections play a reasonably prominent role
in the modern Bayesian approach to statistics, cf. de Finetti (1975). See also the discussion
of intersubjectivistic parameters in Dawid (1979).

Consider a given repetitive structure. A Bayesian would to this associate a personal,
subjective probability uo € P(Z), describing her uncertainty about all possible outcomes of
the various experiments. She might also specify a system of statistics ¢;: £ — %; that are
interesting for predictive or other purposes. Markov kernels Q; can then be calculated as

QiA|Y) =uo{X;EA|Y; =y}
and these will automatically satisfy
Qi ting=po, Q= Iy,

If the system of statistics is reasonably well behaved, we would also have the transitivity
condition satisfied:

Q:itip; Qi =p;; Q).

Because of these relations yo will now automatically satisfy uo€.#, where # is the
maximal family corresponding to (2);er, (Q))ies-
The parameter can now be defined as the random variable

0=2Z,

which takes values in ©@=4¥.
The prior distribution of 0 is simply given as

where P, is the measure defining the integral representation of ug as
Uo() = f e(-)P, (de).
3

The inference on the unknown, random parameter 6 is now performed by computing the
posterior distribution of 6 given the observations, i.e.

/40{0€B|X,= x} =ﬂ0{0€B| Y,‘ = t,(x)}

If we denote these posterior distributions by Px(-), these become random variables taking

values in P(®)=P(%) and we can show that the Bayesian posteriors converge almost surely
(w.r.t. the subjective ug) to the ‘‘true’’ value, i.e. the measure degenerate at 6:

4.1. Proposition. For all B€ B(%)=B(O) and all cofinal increasing sequences (i,)nen
Py, (B) — 15(60) a.s. p.

Proof. Let Z=15(0). Z is bounded and %B(%) measurable and further

Z,= E,(Z|X,) =Py, (B).
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Scand J Statist 11 Extreme point models in statistics 73

The family of o-algebras o(X; ) is increasing and %B(Z)=lim, ¢ 1 0(X;). Thus Z,=Py (B)is

a martingale and
Z,—»Z=150) a.s. uo. O

Note that the main reason for this result to be true is that 6 actually is a function of the
observations, a fact that we find a central part of the theory.

Another way of looking at the theory is given as follows. Suppose we have a given
model for the repetitive structure, a model that might have emerged from probabilistic and
other mathematical considerations that are external to the repetitive structure itself. Then
we could find a system of (¢;);e;, such that this is sufficient and transitive. Ways of finding
such a system is indicated in ch. I1.2 of [EF]. This gives then automatically the kernels
(Q));ie; defined by the conditional distributions of X; given ¢; and we can (in principle) find
€ and . If our first family {u(6), 6€ O} is identical to &, we know that the model is
canonical. If not, we might expect difficulties and might want to modify the model or
rather change the model to the canonical. It is worth noting that observations could never
contradict the canonical model if it did not contradict the first one, since it is in principle
impossible to distinguish whether or not Z. is random, even asymptotically, from only
one observation from the projective limit.

Finally we might along the lines of Martin-Lof (1974), use the procedure as a tool for
model building, by specifying the statistics ¢#; as a family of interesting data reductions and
the conditional distributions from elementary symmetry considerations. The construction
of the extreme point (canonical) model can then be performed and we obtain a statistical
model which is consistent with the symmetry considerations and where the parameter in a
natural way is defined as the limit of the interesting statistics in an infinitely large
experiment.

In the discrete case the use of uniform distributions for the conditional distribution of
the observations given the statistic can also be justified by a maximum entropy argument
rather than symmetry, an approach which is often used in statistical mechanics.

It is tempting to think of the probabilities defining the conditional distributions of the
observations given the value of the statistics as descriptive in the sense that a statistician
chooses to describe a data set x by the reduction of x to the value #(x) and Q(-|¢#(x)). In this
sense the extreme point model is the canonical reduction or description of the infinitely
large experiment or ‘‘population’’. This line of thinking was implicitely contained in the
excellent notes of Martin-Lof (1970).

Finally, we might in the situation, where we have only one sample space Z, find it useful
to embed & into a repetitive structure and use this for constructing models or analysing a
given model.

The main problem is that the actual identification of & is hard in any concrete case.
However the number of cases, where & is known in a reasonably explicit way is gradually
growing and various hints to solve similar problems can be taken from these examples,
some of which are described in detail in [EF].

5. Exponential families

The most well-known class of extreme point models are given by the exponential families
corresponding to the simplest possible repetitive structure (independent identical repeti-
tions). In the discrete case this looks as follows. The partially ordered set I is the set of
integer intervals {1,...,n}, n€N. The sample spaces are given as
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74 S. L. Lauritzen Scand J Statist 11

Z,

where =% is a fixed discrete, at most countable set. We shall use the notation X, for
Z1,...,ny- The projections are coordinate projections and the projective limit can be
identified with the infinite product space

X=%%.. X%, X....

If 1: #— S is a fixed function into an Abelian semigroup (S, @), a canonical model is given
as

POty x,0) =] | (@) p(0)'6(t(x)), OED G.1)
i=1

where a: £—]0, [ is a fixed function and D is a subset of EXP(S), the exponential
functions on (S, @), i.e. those non-negative real-valued functions f satisfying

fs®@N)=f(s)f(1) Vs,1ES (5.2)

and

D= {oe EXP(S)|$(6) = >, a(x)6(t(x)) < w}.

x€EX

In other words, according to p(-|6), the coordinate random variables are independent and
identically distributed with distributions

p(x|6) = a(x) p(6) ' O(+(x)).
Combining (5.1) and (5.2) we get

P, .y x,|0) = (H a (x,.)> #(0)"0(t(x) ®... D1(x,)),
i=1

so that clearly
tn(x1y s Xp) = 1) @ ... D #(xy)

is sufficient. That these models in fact are extreme point models is shown in [EF] Ch. III,
see also Lauritzen (1975).

In the special case where (S, @)c=(N% +) we get the usual exponential families, ex-
tended as in Barndorff-Nielsen (1973, 1978), as also shown by Martin-L6f (1974).

The generalized exponential families described above have not necessarily ‘‘finite-
dimensional statistics’’, i.e. (S, ®) is not necessarily finitely generated, and also the
support of p(-|0) vary with 6.

Examples include the family of arbitrary distributions on a fixed set & corresponding to
S being the set of positive integer valued measures on & with finite support, a(x)=1 and ¢
being

tx)=¢,
where &, is the measure degenerate at x. Then

LX) s X)) =8+ tE

is the empirical distribution.

This content downloaded from
192.80.65.116 on Tue, 25 Aug 2020 20:18:24 UTC
All use subject to https://about.jstor.org/terms



Scand J Statist 11 Extreme point models in statistics 75

Also the family of uniform distributions on {1, ...,68}, 6 EN is exponential in the above
sense with S=(N, V), where

mV n=max{m,n},

t(x)=x and a(x)=1. It is interesting to note that the estimation theory for these generalized
exponential families is at least as elegant as for the usual exponential families, see [EF] Ch.
III, where also further examples are discussed.

As discussed in e.g. Jaynes (1957), usual exponential families can be justified from
maximum entropy considerations. This is also true for the generalized exponential families
as we shall now show in the finite case.

Let & be discrete and finite and consider the exponential family

po(x) = 0(1(x))/p(6), 6EEXP(S)

where t: Z—(S, @) is a given statistic. R
Proposition I11.4.5 and I11.4.8 of [EF] ensures the existence and uniqueness of a €D
such that for a given value #(xo)=to

400.9)) Vi €Dy,

1 1
og0(t0) logn(ty) =E4log——= (1)

(5.3)

where DF,0 is a specified subset of EXP(S), see [EF] for details. If we assume F,°=S
(which is equivalent to 6(x)>0 Vs€S ),DFI0 is the set of strictly positive exponential

functions, and we get by considering 7y=1 and a simple manipulation that (5.3) is
equivalent to

logn(ty) = Eglogn(t(X)) Vn€ Dp,o. 5.4

Let now P, be the set of probability measures on & such that the equation analogous to
(5.4) is satisfied, i.e.

KE P, <>logn(ty) = D, u(x)logn(t(x)) Vn€ Dy, . 5.5
x€EX

Then clearly pg is in P, and we shall show that p; has maximal entropy among the meas-
ures in P, , where the entropy is defined as

Enu) = ~ > u(x) logu(x).
x€ X
We get
En(pg)—En(u) =" u(x) logu(x)— >, p4(x)logpg(x)

= >, w(®) logu(x)—E; 1og 6:(X) +1og $(6)

= > 1) logu(x)-logd(ty) +log p(9)
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76 S. L. Lauritzen Scand J Statist 11

= u@logu()— >, u(x)logh(r(x)) +log ¢(6)
=Z/4(x)log-ﬂc)—>0
. P
where the last inequality is the information inequality. (5.5) represents a definition of the
expectation of a semigroup-valued statistic as an additive functional on EXP(S)

[E,1(X),7] £ E, log u(t(X))

and pg is then the probability measure on & maximizing the entropy subject to the
constraint

E (X)) =1

where [1o, n]=log n(ty).

It should be noted that the fact that exponential families are extreme point models
depends heavily on the particular simple repetitive structure and the symmetry in the
conditional distributions. If we e.g. consider the family of distributions given by
X, ..., X,, ... being independent with

p(x,|0) =7 *"l(1+7, €%, OE R

where x,€{0,1} and (,),en is a fixed and known sequence of positive real numbers,
we get for the joint distribution of X1, ..., X,

n n

] -1, 0LLx

D(xy,...,x,|0) = (H nf) H (1+m; ey te” “m15,)

i=1 i=1

i.e. for all n we have an exponential family with
X1y, X)) =Xx1+...+x,

being minimal sufficient (and transitive). The conditional distributions of the observations
given the statistics are

qxy, ..., x,|t) = (H uf")/y,(nl, ceesTT,)

i=1
if x;+...+x,=t, and zero otherwise, where y, are the elementary symmetric functions

V)= D <1‘[n§s>.

xy+..tx,=t \i=1
x,€ {0,1}

It follows from the results of Pitman (1978), see also [EF] pp. 91ff., that this family
corresponds to an extreme point model if and only if

DEA(EE ALY (5.5)

n=1
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This again reflects the fact that 6 is consistently estimable from one realization of
X1, ...,X,, ... if and only if (5.5) is fulfilled. As is easily seen, (5.5) is equivalent to

N ©
im V, (2 X,,) = 2 7, 1+, %) 2=,

1
Now n=1 n=1

A related example is the model given by X, ..., X,, ... independent and Poisson distributed
with Ey X,=6" for 0 €]0, »[. The point probabilities become

n -1 .
p(xl, ""xn|0)= (l_[ x; ') 92i=|lxi e_zi"a_
i=1

Again we have for each n an exponential family with
n
t(xy,..0x,) =Z ix;
i=1

being minimal sufficient (and transitive) and the conditional distributions of the observa-
tions given the statistic being

c, () if x;+2x, 4. +nx, =t
0 otherwise

q(x,, ...,x,,lt)={

where

- 1
C,,(t)':Z; 2 <x1,-1-,-,xn)'

v=0 " ‘' x;+...+nx,=t

The situation is here somewhat more delicate than in the previous example but one can
show ([EF] pp. 1191f.) that

(a) p(-|0) is an extreme point if and only if 6=1;
(b) the distributions j(-|y), y EN obtained by conditioning on Y.:
PC1y)=p(-|Y= =y, 6)

for some 6,€]0, 1[, where

are also extreme points.

It is unfortunately an open problem whether there are other extreme points but we
conjecture that this is not the case.

6. Exponential families for Markov chains
Consider a sequence of random variables Xy, X, ..., X, ..., taking values in a discrete and
at most countable set Z. Consider statistics

(X0 -5 %,) = (gs (M)} x, y) erx 2 Xn)
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where n,, are the transition counts

Ry = # {k|(xk, Xi41)) = (x, )}

Diaconis & Freedman (1980) have shown that the extreme points of the class of probabil-
ities for which ¢, is sufficient for all n and the conditional distribution of the observations
given the statistics is uniform on the set of strings (xo, ..., x,) with given first and last value
and given transition counts, fall into three classes

(1) recurrent Markov chains

(2) processes starting with a fixed string of transient states and continuing as recurrent
Markov chains

(3) totally transient processes.

If & is finite, only the types (1) and (2) apply. Results of Hoglund (1974) indicate that a
similar result can be obtained by considering the statistics

(X, ..y Xp) = (X0, Hx0, X1) @ ... @ t(xp—1, X1), Xp)
where
XS

is a fixed statistic into an Abelian semigroup (S, @). In the finite case the non-degenerate
extreme points then correspond to recurrent Markov chains with transition probabilities

Po{Xp+1=y|X, = x} = e9(y) 0(t(x, y))/(es(x) $(0)), OED™

where ey is a positive eigenvector corresponding to the maximal eigenvalue ¢(6) of the
positive matrix:

{B(I(xr Yy ))}(x,y)ea"xa"

> 8((x, y)) e,y) = p(6) eg(x)

yEX

and D7 is the set of positive exponential functions. This gives joint probabilities having
Xo=x, degenerate and

plxy, ..., x,) = eg(x,)eqxo) p(6) " 0(t(xg, x1) D ... ® t(x,_1, X))

Unfortunately we do not know a clear proof of this result at present, nor do we know how
it extends to the infinite case.

Note that the example studied by Diaconis & Freedman corresponds to the case where
S is the semigroup of positive integer valued measures on ¥XZ with t(x,y) being the
measure degenerate at (x,y), thus being an analogue of the family of arbitrary distribu-
tions, as considered in the previous section.

7. Linear normal models
The case of projective systems of linear normal models can fortunately be solved com-
pletely. Let I be a directed set as usual and let

Z=R"
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where n;<n; for i<j and n;<«. As projections we take a system of linear maps A;, i<j
satisfying

AjA=Ay fori<j<k

AAE=1I, i<j
where * denotes transpose and I; the identity on R"=%,. The projective limit can be

identified with RN.
Let further L;, i €1 be a family of linear subspaces of Z; satisfying

AL)=L,,
and take now as sufficient statistics
14x) = Bix, ||P)

where B; is the orthogonal projection onto L; and ||-|| is the standard Euclidean distance.
The conditional distributions q(: |(y, 5%)) should be taken uniform on the sphere

{(x€ R*|Bix=y, |x|f'=s%)

If we let A; be the restriction of A; to L;, {(L;,i€I), A;, i<j} is a projective system too,
and we can find the projective limit

L=lim L,
i€l
with canonical projections A;. If we now consider the model given as
® = LXx]0, o[
and the distribution of X; given 6=(&, ®) as
X;~N@A;&, 7I,

we can show ([EF] pp. 217ff.) that this is an extreme point model if and only if both of the
following are satisfied:

(@) ni—dim(L)—® i—»
(b) Vi:A;B;A—0 jox

Condition (a) says that the degrees of freedom available for estimating ¢ should tend to
infinity and (b) that the maximum likelihood estimate of A;& =E¢X; should be consistent.
To see the latter we note that based on X, the maximum likelihood estimate of A;£ is B, X;
and since A;=A;A;, A;B;X; is the maximum likelihood estimate of A;& based on X;. But
this has variance equal to

(A;B))(A;B)* = AyB;A}

since B;B}=B?=B; because B; is an orthogonal projection. As a special case we have the
additivity models for two-way classification, i.e. where I=NXN,

Znn= {(x{i)i=|,...,m,j=l,...,nlx(ie R}
Lm,n = {(xy)lxg= ai+ﬁj’ i= 1, ...,m;j= 1, ,,,,n}

and A; are coordinate projections.
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If we consider the models defined as (X;); ;)enxn being independent and normally
distributed with

X~ NG o)
where
(gii)i=],...,m,j=l,...,ne Lm,n Vm! n, 02?0’

this is an extreme point model as shown in [EF] pp. 223-24.
Another special case is determined by the linear regression problems with /=N, Z,=R"
and

Ln = {(xl’ -”9xn)|xi = Cl+/3[,'}

where (¢4, ...,t,,...) is a fixed and known sequence of real numbers, the model having
(X,)nen independent and

X,~N(a+pt,,0*) a,BER, 0*>0.

This is an extreme point model if and only if

SSDp= Y (t—f)P—>wo, n—>w (7.1)

i=1

where *=(t;+...+1,)/n, see [EF] p. 225 for a proof of this.

These results reflect the fact that the row—and column effects in the additive model for
the two-way classification are consistently estimable when the number of rows and
columns both tend to infinity. Also that the parameters in the regression model are
consistently estimable if and only if condition (7.1) is fulfilled.

8. Models for 0—1 matrices

An interesting class of examples different from the usual class of exponential families are
extreme point models for 0—1 matrices.

Aldous (1981) has investigated the class of doubly infinite arrays (X;); jen of random
variables that are row-column exchangeable (RCE-arrays), i.e. satisfying for all
m,n, t€S(m), 0 € S(n)

)
(ijj)i=l,“.,m;j= Loon— (Xn(l')a(i))i=1,...,m;j=l,...,n

where S(/m) is the group of permutations of m elements. If we consider the special case
where X; takes values in {0,1} this corresponds to the repetitive structure, where
I=NXN, %}, is the set of mXxn matrices with elements either zero or one, f, ) being
a maximal invariant under the action of S(m)XS(n) on &, ) defined by permutation of
the indices. Finally the row-column exchangeability corresponds to the conditional distri-
bution of the matrix given the statistic being uniform of the corresponding orbit.

The extreme points of the class of RCE-distributions are those that are dissociated, i.e.
where

(Xij)iSm Js<n and (Xii)i>m >n

are independent for all m and n.
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Further, any such array can be matched in distribution by choosing
(i) a measurable function k:10, 1[>*—{0, 1}
(i) independent sequences (§);en, (7)jen> (Aj); je n Of i.i.d. uniform ]0, 1[ random varia-
bles, and letting

Xf’; = h(&;, Nj» lij)’

i.e. X§ is composed by h from a random row-effect &;, a random column-effect 7; and an
interaction A;. An alternative formulation lets (X}) be conditionally independent given
(EDieno (17);¢ n and the conditional probabiliity of (X}) being equal to 1 is now ¢(&;, 77;). The

‘‘parameter’’ is here k (or ¢) but it is unfortunately not clear in which sense the model is
overparametrized, since different choices of 4 can give the same ¢ and different choices of
¢ the same distribution of X}.

A different but related model is Rasch’s model for item analysis. In this model, the
random variables X;; should be interpreted as the response of a person j to a question i and
the model lets X;; all be independent with

a; B;
LRag )

where a=(a;);c y and =(8));cy are sequences of unknown non-negative parameters. The
marginal point probabilities for (x;);<,, ;<, are then

n

m n X ﬁ a? ﬂjj
Pa,ﬂ{X[m,n] = x[m,n]} = H H (la;gl)ﬂ = =l =L (8.1)
i=1 j=1 iPj l—[ n (1+a,6)

i

Where r,=LF,x;, s;=LZ,x; are the row- and column sums of the matrix x, ,.

The set of row- and column sums is a sufficient statistic and the conditional distribution
of the matrix given the statistic is uniform on the set of matrices having the given row- and
column sums.

In the repetitive structure described in connection with the RCE-arrays it is not clear at
present what the corresponding extreme point model is. However one can show ([EF] Ch.
IV.7.) that the following condition is necessary for P, g to be an extreme point

S S

1 +,6,,)2

(1+a,)?

Further the condition below is sufficient for P, g to be an extreme point:

S 0, B
B: =
; (I+a,)(1+8,)(1+a,,)

This reflects the fact that if A is not satisfied, the parameters are not consistently estimable
from observation of the infinite matrix.

If e.g. I, ,8,(1+B,) < the a-s are not estimable, if L7, a,(1+a,) 2<% the B-s are
not. On the other hand, if B is satisfied, both the a-s and $-s are consistently estimable up

6—848192
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to a constant factor that can be multiplied on the a-s and divided into the 3-s. In the special
case where all the a—s and 8—s are contained in a compact interval not containing zero,
condition B is trivially fulfilled and consistent estimation is possible. Haberman (1977)
investigated asymptotic properties of maximum likelihood estimates under this compact-
ness assumption and showed uniform consistency and asymptotic normality along cofinal
sequences, where the number of rows and columns tend to infinity at not too different
speeds. It would be interesting to see asymptotic theory under condition B (or A).

Note that as a consequence we see that the set of extreme points is not closed in the
weak topology. If we define oV, g™ by

2 o
N) = gN) — l ifisN
an=p {1 ifi>N,

P g0 are all extreme since condition B is satisfied and
Paw),‘;(m"’Pu,ﬁ

where a;=i*=f;. But P, g is not extreme since condition A is violated.

If we consider the Rasch model in the different repetitive structure where the number of
rows m is fixed and only the number of columns 7 is allowed to tend to infinity, P, g is
never extreme. The corresponding extreme point model is then obtained by conditioning
on the sequence s=(sy, s,,...) of column sums and considering this as a fixed ‘‘parame-
ter’’. We then get the probabilities

n

m
P, {Xy=x; i<m, jsn}= n I:ij(al"“’am)_lH af"’]
i=1

J=1

where y,(-, ..., -) are the elementary symmetric functions. If the sequence s has infinitely
many coordinates that are not equal to 0 or m, P, ; is extreme and the remaining extreme
points consist of various degenerate measures, see [EF], pp. 99ff.

Note that the idea of considering the extreme point model here leads to a conditional
inference procedure which is also supported by other arguments, since the conditional
model is free of the nuisance parameters (8, ...,8,, ...), see e.g. Andersen (1973).
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Steffen L. Lauritzen, Institute of Electronic Systems,
Aalborg University Centre, Strandvejen 19, 9000 Aalborg, Denmark

DISCUSSION OF STEFFEN LAURITZEN'S PAPER

Ole E. Barndorff-Nielsen (University of Aarhus)

This impressive paper brings a variety of questions to mind, but the following comments
are restricted to two of these.

It appears that there are some intriguing relations between the concept of extreme point
models and the Fisherian ideas of information and conditionality.
Thus, for the model function

pxy, ..., x,|0) =ﬁ 0 H (147, )1’ 515,
i=1 i=1
considered in section 5, we have that the observed Fisher information is
(@)= i 7, %/(1+m; %2,
i=1
For any fixed value of 6 we find, writing j..(6) for lim,_,  j..(6),
Ju() = < i ml(1+m) = oo}

i=1

in other words, observed information tends to « if and only if the model is an extreme
point model. (Since the model is regular exponential we have j,(0)=V,(Z,x,;) so that the
above double-implication is a paraphrase of a remark in section 5.)

Similarly, for the sequence x;,x,, ..., X,, ... of Poisson variates with Egx,=6" we have
that observed information based on x, .., x,, is given by
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n

W= i-1)6"2,
i=2
and again the model is extreme if and only if j.(6)=<.
As a third example, relating to the Bernoulli model discussed in section 1, suppose that 8
in that model follows the beta distribution

P(6;0) =122 ga-1(1 gy,
I'(a)?
The observed information on a provided by xy, ..., x, is

Jn@) =29 (@) -4y’ Qa)—y’ <E x,.+a> —y’ (n—z x,.+a> +4y' (n+2a)

i=1 i=1

and (with probability 1)
Jela) =2y (@)—4y'(2a).

The finiteness of j.(a) is a reflection of the fact that whatever the value of a the law of the
Bernoulli sequence is not an extreme point.

In considering observed information in the Rasch model, as given by (8.1), there is a
slight simplification in reparametrising to @,=loga; and y;=logf;. Observed information
on @;, given the other parameters, is

n e‘l’i""l’j
+ ’
=1 ( +e¥ '/’,)2

from which it is immediately plausible that condition A, of section 8, should be a
necessary, but not in general a sufficient, condition. It seems not unlikely that condition B
has an interpretation in terms of the observed information matrix for the full parameter set.

The author has already indicated a relation to conditional inference, by the last para-
graph of the paper. What considerations does the viewpoint of extreme point models lead
to in connection with the so-called nonergodic exponential models (cf. Basawa & Scott
(1983) and references therein)? For example, suppose xi,X,...,X,, ... follows the auto-
regressive process of order 1

Xp=Pxp_1+u, n=1,2,..,

where xo=0 and uy,us,...,u,,... is a sequence of independent and N(0, 1)-distributed
random variables while the regression parameter § can take any real value. The model for
(x,...,X,) is then a (2, 1) exponential model, of the nonergodic type, and inference on 8
based on xy, ..., x, should in principle be performed conditional on an ancillary statistic.
(The signed likelihood ratio ancillary or the affine ancillary can be used as approximate
ancillaries, cf. for instance Barndorff-Nielsen (1980)). Is there a derived extreme point
model for B in this case and how does the inference from this compare with the more
traditional conditional approach?
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A. P. Dawid (University College, London)

For some years now I have followed with great interest and admiration the work that
Steffen Lauritzen has so elegantly surveyed here. It has two qualities in particular which I
appreciate: the beauty and depth of its mathematics, and the importance of its underlying
statistical concepts. Here, at last, is a topic truly worthy of the much abused title
‘‘Mathematical Statistics’’. |

On the mathematical side, we have a rich vein of deep and difficult problems from
which, so far, only a few nuggets have been mined. The statistical side is, perhaps, even
more challenging, since it addresses the most basic question in Statistics: Where does the
model come from? In this we have a philosophical challenge to the very foundations of our
subject.

The meaning and interpretation of a statistical model are all too rarely questioned. Is
there a ‘‘true model’’? How are probability assignments to be verified or falsified? A
simple but instructive example is the following (Dawid, 1984). Consider a model for a non-
replicable time-series (X;: 1<t<), under which the X, are jointly normal with E(X,)=u,
var (X,)=0?, cov(X,, X)=00” (s*t). Here u, 0%, 0=0 are arbitrary parameters. If 0>0,
this model asserts that different X’s are positively correlated. What does this mean? How
can it be established? Can o be estimated? It turns out that none of the parameters is
consistently estimable. In particular, the mle of g is always 0. What is going on here?

Now the above model implies that the (X,) are exchangeable. So, by de Finetti’s
Theorem, they will become independent after conditioning on the tail o-field. In
fact, letting Y=lim, ,n"'L" X, Z=X,—Y, we have X,=Y+Z, with Y~N(u, 00,
Z~N@O0,(1-p9) o?) (t=1,2,...), all independently. The corresponding extreme-point model
is obtained by conditioning on Y, thus recovering the submodel of the original model for
which p=0. No sequence of data could distinguish between a distribution with 0>0 and
one with o=0. What then is the meaning of the ‘‘correlation’’ ¢? It seems clear to me that
any use of the original model, rather than its extreme-point version, is fraught with danger.

Another important philosophical application of the ideas of extreme-point modelling is
the following (Dawid, 1982 a, b). Consider a collection X of variables, and suppose that it
can be generally agreed that uncertainty about gX is the same as that about X, for all
transformations g belonging to some symmetry group G. The archetypal example is
exchangeability, with g a permutation of elements, but other important applications arise
in experimental design layouts, for example. As with exchangeability, such problems can
usually be embedded in an appropriate invariant repetitive structure. The extreme points
of the family of all invariant probability distributions constitute a family which has every
right to be called ‘‘the’’ appropriate statistical model under the assumed symmetries.
(From exchangeability of events we can thus derive the Bernoulli model.) In other words,
we have conjured probability distributions out of thin air by invoking ideas of symmetry
alone. This magical process has, I believe, deep implications for the philosophy of
Probability and Statistics.
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Persi Diaconis (Stanford University)

It is a pleasure to congratulate Lauritzen on this superb summary of a rapidly expanding
area. I would also like to acknowledge how much I appreciate his continued contributions
to this area. Lauritzen realized the importance of Martin-Lof’s treatment before anyone
else. He made needed basic changes (extending the conditional distribution from uniform
on the inverse images to a general projective system). All of this was done well before the
articles of Dynkin & Follmer made this area fashionable. I only lament that some of his
research remains in unpublished technical reports and urge him to broader distribution.
I want to make a comment, add a reference, and ask a question.

Comment. The example in Section 5 concerning the extreme points of the model
generated by independent Poisson variables with parameter @' is closely related to an
important technical tool in the study of random permutations. Let S, denote the symmet-
ric group on n letters. The cycle vector of 7€ S, is the vector a=(a,(n), ax(),...) where
a(n) is the number of cycles in 7 of length i, when 7 is written as a product of cycles.

If 7 is chosen at random on S, then a is a random vector. Many features of permuta-
tions can be read from a. For example, a; is the number of fixed points of x; the
distribution of a; is one of the oldest in probability—Monmort showed in 1708 that
P{a,=0}=1—1/e. The order of x is the smallest integer n such that n”"=id; the order of x is
the least common multiple of those i such that ¢;+0. Erdos & Turan have shown that as n
tends to infinity, log order (x) has mean (logn)*2, variance (logn)’/3, and a limiting
standard normal distribution. Lloyd & Shepp discuss the distribution of the number of
cycles and the maximum cycle length.

All of the distributions involved can nowadays be read off of a probabilistic construction
closely related to Lauritzen’s example:

Let N have a geometric distribution with parameter p. Choose a permutation at random
by first choosing N and then choosing 7z uniformly in S,. Lloyd & Shepp show that under
this model, the random variables afm) have independent Poisson distributions with
parameter P'/i for i=1,2, ... . Here the sufficient statistic is L iq; as in Lauritzen’s example,
and the conditional distribution is

[1

P{a,,...,a,|Lia;=n}= i“a;!

if Lia,=n
0 otherwise.

This is of course the distribution of the vector a from a randomly chosen permutation in
S,

In applying these facts to probability problems one computes the distribution of func-
tionals under the independent Poisson model and then argues that this is the correct
asymptotic distribution by using a Tauberian theorem. It would be of great interest if there
were any other extreme points which could be used systematically.

Reference. In discussing Aldous’ theorem on zero-one matrices, it is remarked that the
extreme points are not completely known. This problem has been solved by Hoover who
showed the only indeterminancy is measure preserving transformations of the coordinates
of h. Alas, Hoover’s proof makes heavy use of modem logic (model theory) and I do not
know any probabilist who understands the result.

Question. One of Lauritzen’s main contributions to this field is the explicit recognition
that non-uniform distributions were needed as conditional distributions to get the usual
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models. I would dearly love to hear a conversation between Lauritzen and Martin-L6f on
this point. I wonder if he can provide us with a discussion of the many issues involved.

References

Hoover, D. A. (1981). Relations on probability spaces and arrays of random variables. Preprint,
Institute for advanced Study, Princeton, New Jersey.

Shepp, L. A. & Lloyd, S. P. (1966). Ordered cycle length in a random permutation. Trans. Amer.
Math. Soc. 121, 340-357.

Se¢ren Johansen (University of Copenhagen)

First I would like to congratulate Steffen Lauritzen on a good and readable paper which
tries to tackle a very important problem in statistical inference namely the concept of
model building.

The basic idea is that statistical models have more structure than is usually reflected in
the discussion of inference principles.

By making this structure, i.e. the repetitive structure, more explicit one can embed the
model into a family of models which is natural from the frequentist point of view.

An important aspect is the interpretation of the parameter, and in fact the definition of
the parameter as the limit of a statistic in a large experiment.

My comments will concentrate mainly on this point by considering three examples from
the paper.

1. Binary exchangeable variables.
2. Independent Poisson variables with EX,=6".
3. Independent Gaussian variables with EX,=o¢,,

VX,= o and th‘,<oo.

n=1

In the first example de Finetti’s result shows that the model depends on a probability
measure u on [0, 1], which can then be considered the parameter.

The family is then a maximal family and not extremal. The extremal model is found by
restricting the parameter to be a one point measure on [0, 1].

The implication of the theory is that u it not identifiable from a realization of {X,,}. If the
parameter is restricted to be a one point measure then it can be identified at least
asymptotically and one gets that X,—6 a.s. Py.

Thus the extremal family can be used to analyse identifiability and shows to what extent
the parameter can be estimated consistently. In a sense nothing is lost by going to the
extremal family as along as only one realization of the process is observed.

In the second example we have independent Poisson variables with mean EX,=6".

If 6>1 these measures are extremal and if <1 then they are not. One should instead
condition on Y,=5>_nX,, where VY, ,=E;_ n’0"<w, 6<I.

Thus again the extremal family indicates exactly what can be estimated consistently,
namely 6 if 6>1 otherwise just V..

The price for going to the extremal family is of course that we give up 6 (if 6<1) and
replace it by Y... Now Y. may have an operational meaning, in the sense that we can
estimate it, but 8 may still have an outside meaning even if it is less than 1. The experiment
performed does not help us in determining 6 consistently, still an estimate of 6 can be
made and confidence intervals can also be made.
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The final example is typical of this situation: In this case we have
B,=Lr X, t/ir, 2~N(B, 6*/Lr,1¥) which converges to B.~N(B, 6*/L, 1) which is easy
to use for inference purposes. The extremality considerations imply that one should
condition on f. and consider the distributions of Xi, ..., X, given 8. which does not even
involve the parameter 8. Thus the parameter 8 should be removed from the statistical
problem alltogether and yet 8 may have an outside interpretation, whereas the extremality
considerations only give 8 an operational meaning in relation to a specific design.

My last comment will be on a comparison of the fixed effects and random effects model
for one way analysis of variance.

Let the data be given by X;;, i=1,...,k, j=1,...,n.

If we can take more measurements by sampling from each of the k groups, i.e. by letting
n— o, we perform the data reduction given by

n k n
X => X;/n and s3=> > (X;—X)k(n-1).
Jj=1

i=1 j=1

The extreme point model underlying this is clearly that of the X;’s being independent
and X;~N(&; o).

If instead we want to extend our observation by including more groups then we
condense the data further to

k n k
X= 2 > X lkn; s%=§ &, ~XPlk—1); s

i=1 j=1

The extreme point model generated by this data reduction is that the X;’s are independ-
ent between groups and that within a group we have EX;=§, VX;=w?, V(Xj, Xim)=v,
Jj*+=m, where v=—w?/(n—1).

If we allow both n and & to go to infinity we get that v=0 and in this case we have the
usual representation of the model:

where the Y’s and the U’s are independent such that EY;=§, VY;=v, EU;=0 and
VU;=0d%, hence w*=0*+v.

Thus the difference between the three models comes out very clearly if one includes in
the model formulation in what way one wants to extend the set of observations.

Reply by Steffen Lauritzen

First I would like to thank the participants in the discussion for their interesting comments
and questions.

A. P. Dawid points to the possibility of deriving statistical models from symmetry
considerations. I should like to point out explicitly that in a mathematical sense, the
‘‘symmetry’’ approach is almost equivalent to the ‘‘sufficiency’’ approach. To each
sufficient system of statistics, there is a system of transformation groups (those preserving
the value of the statistics). To each system of groups, there is a system of statistics (the
maximal invariants). The difference between the approaches is of a nonmathematical
nature, and due to the fact that in certain cases one can describe groups in simple terms
having an immediate intuitive appeal (row-column exchangeability), whereas the corre-
sponding maximal invariants are strange objects. Conversely, it might be the statistics that
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are immediately understood (row-column sums), whereas the groups seem artificial and
appear as a ‘‘coincidence’’. It seems an interesting task to try to combine the approaches
systematically. For example, referring to section 8 of the paper, it seems reasonable to
conjecture that if an array X=(X;); jen of 0—1 valued random variables is row-column
exchangeable and the conditional distribution of X[, . given its row and column sums is
uniform, as in the Rasch model, then the array has the same distribution as (X¥) where X}
are independent given E and n with

& 7}

POX;= e m =L

and §=(§);en are i.i.d. with distribution F and independent of n=(7));en that are i.i.d.
with distribution G. In many respects this is a more reasonable model than the one
discussed by Aldous and the Rasch model itself.

S. Johansen points in several examples to the fact that parameters might have a meaning
outside the repetitive structure under consideration, and that a strict application of the
idea of ‘‘always using the extreme point model’’ may lead to a total removal of the
parameter of interest from the problem. Still one can make confidence intervals etc. for the
parameter in question. An important distinction to be made here has been done explicitly
by Dawid (1982), who introduces the notion of extrinsic and intrinsic parameters. A
parameter is extrinsic, if it has a meaning from a well defined context different from the
experiment under investigation, and if this is not the case, it is intrinsic. A very clear
example of an intrinsic parameter is the ‘‘difficulty’’ of a question and the ‘‘ability”’ of a
person in the Rasch model. A precise definition of an intrinsic parameter is one which is
the limit of the sufficient statistic in a particular repetitive structure, in other words the
canonical parameter in an extreme point model. Now if, as in the regression example
discussed by Johansen, an extrinsic parameter S happens not to be a function of the
intrinsic parameter (§..), we should get a strong suspicion that the design (T <) is
inadequate. Also one should be extremely careful with confidence intervals since these
typically refer to an (in this circumstance) unjustified frequency interpretation of certain
probabilities.

O. Barndorff-Nielsen points to a possible connection between the notion of extremality
and infinite Fisher information and asks for the connection to work of Basawa, Feigin,
Heyde and Scott on non-ergodic exponential models. There is some connection, although
this is not as clear cut as the examples might suggest. Let me first describe the relations in
verbal terms and then through some examples give a more precise statement. The notion
of extremality is a strict version of ergodicity. Infinite Fisher information is a weak
concept and could be termed first-order ergodicity. The ergodicity considered by Basawa
et al. is similarly a property of weak type and could be termed second-order ergodicity.
Under suitable regularity conditions (ensuring that the information is well defined) extre-
mality will imply ergodicity of first and second order, whereas the converse will only be
true in special cases. Let us recall that Basawa et al. terms a model non-ergodic if the
observed information

jn(oth "-9Xn) = —DzlogL,,(O;Xh -'-aXn)

properly normalized, converges to a non-degenerate random variable. The Neyman factor-
ization theorem ensures that the observed information is a function of the sufficient
statistic and thus that this limiting random variable is measurable w.r.t. the tail o-algebra
of the sufficient statistics. Thus all extreme point models are second-order ergodic,
provided that the observed information is well defined. It is, however, rarely so that this
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limiting random variable generates the tail og-algebra. In e.g. exponential families, the
observed information about the canonical parameter does not depend on the observation
at all. In general the observed information depends heavily on the parametrization, and it
is not clear to me whether this is also the case for second-order ergodicity. Basawa et al.
have formulated a ‘‘tail conditionality principle’’ involving a conditioning on the tail o-
algebra generated by the observed information, treating the limiting random variable as a
parameter. This is obviously now related to the idea of investigating the extreme point
model, although the latter involves a much stronger conditioning.
And now to the examples: Suppose (X,),en are independent Poisson variables with

EX,=¢°, EX,=¢€*°, n=2; 0€ER.

The statistic

T,= X,+2§": X,

i=1
is sufficient and the observed and expected Fisher information are equal and equal to
i(0) =ju(0, x1, ..., x,) = 4n—1) e*0+ ¢
The model is clearly both first and second-order ergodic but the event
A = {T, is even infinitely often}
= {X, is even}
is tail-measureable with Pg¢(A) ¢ {0, 1}, and the model is not an extreme point model. The
corresponding extreme point model is obtained by introducing an extra parameter to

describe the events A and A° and conditioning on this.
If we reparametrize by letting =logA, we get

JnA, X1, e x0) =2(n—=1) 41,472

and the tail o-algebra generated by the observed information happens to be identical to that
generated by T,,. It now depends on what is meant by ‘‘proper normalization’’ whether or
not the model is second-order ergodic in this parametrization.

A less pathological example is a simple Galton-Watson process:

XII
Xn+l =Xn+2 Yim "Y0=1
i=1

where (Y,-‘,,) are i.i.d. with a geometric distribution:
Po{Yin=y}=(1-60)¢, 6>0,y€0,1,2,...
The likelihood function is proportional to
L(0:x,,...,x,) = (1—0y°F " Tn1g7%0 = (] gy g
where z,=1+x;+...+x,_;. The observed and expected Fisher information are
JnO03x1, ooy X) = 2,(1=0) 2+ (x,— 1) 672
i(0)=((1-6)""-1)67*(1-6)""
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The model is first-order ergodic, but not ergodic in the sense of Basawa et al. see e.g.
Basawa & Scott (1983), and therefore not an extreme point model. In fact

X,(1-6)"23 W(6)

where W(6) has an exponential distribution. Conditioning on W=w, X,—X,_, are inde-
pendent and Poisson distributed with geometrically increasing expectations, and the model
is therefore closely related to the Poisson example considered in section 5 of the paper.

Finally Barndorff-Nielsen raises a question concerning the extreme point model corre-
sponding to an explosive autoregressive process. The question is certainly interesting, but
it would demand a publication on its own and a certain amount of hard work to give a full
answer.

As a partial answer, let me say the following. The corresponding minimal totally
sufficient statistic is

-1
T,= (nzx,?, E X,.X,._,,X,,>.
i=1 i=1

The maximal family will contain measures given as
Xn+l =ﬂXn+yﬂ_n+£n’

where ¢, are i.i.d. N(0, 7%, 7>0 and y and  are real-valued parameters. Thus an extreme
point consideration seems in the first place to give rize to an extension of the model. In the
case |8|]<I these measures are probably extreme, whereas this is not the case when |3|>1,
since then LX? can be normalized to converge to a non-degenerate random variable. I

hope to be able to answer this question more completely in the future.

P. Diaconis asks for the status of the non-uniform conditional distributions. I can hardly
give a conversation between Martin-L6f and myself at this place, but I think the following
is a correct evaluation. It was an important and interesting point made by Martin-Lof that
surprisingly many interesting statistical models can be generated by uniform distributions.
It requires a slightly more general notion of uniformity, cf. Martin-L6f (1975), than that
described in Martin-L6f’s earlier work (1970, 1974). It also requires some ingenuity, see
how the Poisson model is derived in Martin-L6f (1974). I am not too convinced that non-
uniform distributions are really needed as suggested by Diaconis. I introduced the non-
uniform distributions as a technical convenience to make the theory more flexible and to
be able to treat more examples without having to be as ingenious as was otherwise
necessary.
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